"V体育官网入口" Evaluation of Isoflavones as Bone Resorption Inhibitors upon Interactions with Receptor Activator of Nuclear Factor-κB Ligand (RANKL)
"> Figure 1
Structure of the main isoflavones.
"> Figure 2Depiction in 3D on the right (green Receptor activator of nuclear factor-κB ligand (RANKL), magenta osteoprotegerin) and in 2D on the left of the main interactions established between the active site of RANKL and: (a) Daidzein; (b) Formononetin; (c) Genistein; (d) Biochanin A; (e) Coumestrol. Continuous lines represent hydrophobic interactions, while black dashed lines show hydrogen bonds and dashed green lines π-π interactions.
"> Figure 2 Cont.Depiction in 3D on the right (green Receptor activator of nuclear factor-κB ligand (RANKL), magenta osteoprotegerin) and in 2D on the left of the main interactions established between the active site of RANKL and: (a) Daidzein; (b) Formononetin; (c) Genistein; (d) Biochanin A; (e) Coumestrol. Continuous lines represent hydrophobic interactions, while black dashed lines show hydrogen bonds and dashed green lines π-π interactions.
"> Figure 3ITC raw data of titration of RANKL with isoflavones (a) Daidzein; (b) Biochanin A; (c) Formononetin+Biochanin A; (d) OPG.
"> Figure 4Energetic contributions to binding energy of RANKL and: (a) Daidzein; (b) Formononetin; (c) Genistein; (d) Biochanin A; (e) Coumestrol; blue bar—Gauss 1 interactions; green—Gauss 2 interactions; red—Repulsion; light blue—Hydrophobic interaction; magenta—Hydrogen bonds; olive—Rotational; back—Total affinity.
"> Figure 4 Cont.Energetic contributions to binding energy of RANKL and: (a) Daidzein; (b) Formononetin; (c) Genistein; (d) Biochanin A; (e) Coumestrol; blue bar—Gauss 1 interactions; green—Gauss 2 interactions; red—Repulsion; light blue—Hydrophobic interaction; magenta—Hydrogen bonds; olive—Rotational; back—Total affinity.
"> Figure 5The influence of isoflavones on Saos-2 cells metabolic activity determined by PrestoBlue assay after 14 days exposure. Control cells were not exposed to any compound but the vehicle; values are means ± standard deviations from at least three independent experiments (n ≥ 16); statistical significance was calculated versus control cells (untreated); * p ≥ 0.05, ** p ≥ 0.01, *** p ≥ 0.001.
"> Figure 6The influence of isoflavones on Saos-2 cells alkaline phosphatase (ALP) activity determined by p-nitrophenyl phosphate (pNPP) assay after 14 days exposure. Control cells were not exposed to any compound but the vehicle; values are means ± standard deviations from at least three independent experiments (n ≥ 15) (A); representative images of cells incubated in the presence of ALP substrate BCIP/NBT after treatment with isoflavones using Nikon TS100 Eclipse microscope (Japan), 200× magnification (B); isoflavones as regulators of ALP expression gene quantified by real-time PCR and normalized using glyceraldehyde-3-phosphate dehydrogenase (GAPDH) as a reference gene (n ≥ 3); (C); statistical significance was calculated versus control cells (untreated), statistical significance was calculated versus control cells (untreated), * p ≥ 0.05, ** p ≥ 0.01, *** p ≥ 0.001.
"> Figure 7The influence of isoflavones on Saos-2 cells matrix mineralization determined by Alizarin Red S spectrophotometric assay after 14 days exposure. Control cells were not exposed to any compound but the vehicle; values are means ± standard deviations from at least three independent experiments (n ≥ 9) statistical significance was calculated versus control cells (untreated), * p ≥ 0.05, ** p ≥ 0.01, *** p ≥ 0.001 (A); representative images of cells stained with Alizarin Red S after treatment with isoflavones using Nikon TS100 Eclipse microscope (Japan), 200× magnification (B).
"> Figure 8The influence of 14 days of exposure of isoflavones on the expression of genes in Saos-2 cells. The expression levels of RUNX2, COL1A, RANKL, OPG were quantified by real-time PCR and normalized using glyceraldehyde-3-phosphate dehydrogenase (GAPDH) as a reference gene. Control cells were not exposed to any compound but the vehicle; values are means ± standard deviations, n ≥ 3; statistical significance was calculated versus control cells (untreated), * p ≥ 0.05, ** p ≥ 0.01.
">
Abstract
Receptor activator of nuclear factor-κB ligand (RANKL) is a cytokine responsible for bone resorption. It binds its receptor RANK, which activates osteoporosis. High levels of osteoprotegerin (OPG) competitively binding RANKL limit formation of ligand-receptor complexes and enable bone mass maintenance. The new approach to prevent osteoporosis is searching for therapeutics that can bind RANKL and support OPG function. The aim of the study was to verify the hypothesis that isoflavones can form complexes with RANKL limiting binding of the cytokine to its receptor. Interactions of five isoflavones with RANKL were investigated by isothermal titration calorimetry (ITC), by in silico docking simulation and on Saos-2 cells. Daidzein and biochanin A showed the highest affinity for RANKL V体育官网入口. Among studied isoflavones coumestrol, formononetin and biochanin A showed the highest potential for Saos-2 mineralization and were able to regulate the expression of RANKL and OPG at the mRNA levels, as well as osteogenic differentiation markers: alkaline phosphatase (ALP), collagen type 1, and Runt-related transcription factor 2 (Runx2). Comparison of the osteogenic activities of isoflavones showed that the use of physicochemical techniques such as ITC or in silico docking are good tools for the initial selection of substances showing a specific bioactivity. Keywords: RANKL; osteoporosis; isoflavones; ITC; Saos-2; ALP; docking simulation .1. Introduction
2. Results and Discussion
2.1. Characteristic of Complexes of Isoflavones with RANKL
2.2. Energetic Effects of RANKL-Isoflavones Interactions
2.3. Effect of Isoflavones on Saos-2 Viability and Mineralization (VSports手机版)
3. Materials and Methods
"V体育官网入口" 3.1. Chemicals and Reagents
3.2. Isothermal Titration Calorimetry
VSports app下载 - 3.3. Molecular Modeling
3.4. Cell Culture
3.5. Cell Viability
3.6. Alizarin Red Cells Staining (V体育官网入口)
VSports注册入口 - 3.7. Estimation of ALP Activity
3.8. Gene Expresssion Analysis
3.9. Statistical Analysis
"VSports最新版本" 4. Conclusions
Author Contributions
"VSports注册入口" Funding
Acknowledgments
Conflicts of Interest
References
- Stawińska, N.; Ziętek, M.; Kochanowska, I. Molecular aspects of bone resorption and their therapeutical capability. Dent. Med. Probl. 2005, 42, 627–635. [Google Scholar]
- Park, J.H.; Lee, N.K.; Lee, S.Y. Current understanding of RANK signaling in osteoclast differentiation and maturation. Mol. Cells 2017, 40, 706–713. [V体育安卓版 - Google Scholar] [CrossRef] [PubMed]
- Warren, J.T.; Zou, W.; Decker, C.E.; Rohadki, N.; Nelson, C.A.; Fremont, D.H.; Teitelbaum, S.L. Correlating RANK ligand/RANK binding kinetics with osteoclast formation and function. J. Cell. Biochem. 2015, 116, 2476–2483. [Google Scholar] [CrossRef] [PubMed]
- Bekker, P.J.; Holloway, D.; Nakanishi, A.; Arrighi, M.; Leese, P.T.; Dunstan, C.R. The effect of a single dose of osteoprotegerin in postmenopausal women. J. Bone Miner. Res. 2001, 16, 348–360. ["VSports最新版本" Google Scholar] [CrossRef]
- Boyce, F.B.; Xing, L. Functions of RANKL/RANK/OPG in bone modeling and remodeling. Arch. Biochem. Biophys. 2008, 473, 139–146. ["VSports注册入口" Google Scholar] [CrossRef]
- Cheng, X.; Kinosaki, M.; Takami, M.; Choi, Y.; Zhang, H.; Murali, R. Disabling of receptor activator of nuclear factor−kappa B (RANK) receptor complex by novel osteoprotegerin−like peptidomimetics restores bone loss in vivo. J. Biol. Chem. 2004, 279, 8269–8277. [Google Scholar] [CrossRef]
- Kaczmarczyk-Sedlak, I.; Wojnar, W.; Zych, M.; Ozimina-Kamińska, E.; Taranowicz, J.; Siwek, A. Effekt of formononetin on mechanical properties and chemical composition of bones in rats with ovariectomy-induced osteoporosis. Evid. Based Complement. Altern. Med. 2013, 2013, 457052. [Google Scholar] [CrossRef]
- García Palacios, V.; Robinson, L.J.; Borysenko, C.W.; Lehmann, T.; Kalla, S.E.; Blair, H.C. Negative regulation of RANKL-induced osteoclastic differentiation in RAW264.7 cells by estrogen and phytoestrogens. J. Biol. Chem. 2005, 280, 13720–13727. ["V体育平台登录" Google Scholar] [CrossRef]
- Su, S.J.; Yeh, Y.T.; Shyu, H.W. The preventive effect of biochanin A on bone loss in ovariectomized rats: Involvement in regulation of growth and activity of osteoblasts and osteoclasts. Evid. Based Complement. Altern. Med. 2013, 2013, 594857. [VSports - Google Scholar] [CrossRef]
- Singh, B.K.; Dixit, M.; Dev, K.; Maurya, R.; Singh, D. Formononetin, a methoxy isoflavone, enhances bone regeneration in a mouse model of cortical bone defect. Br. J. Nutr. 2017, 117, 1511–1522. [Google Scholar] [CrossRef]
- Ayoub, N.; Singab, A.N.; El-Naggar, M.; Lindequist, U. Investigation of phenolic leaf extract of Heimia myrtifolia (Lythraceae): Pharmacological properties (stimulation of mineralization of SaOS-2 osteosarcoma cells) and identification of polyphenols. Drug Discov. Ther. 2010, 4, 341–348. [Google Scholar] [PubMed]
- Aricov, L.; Angelescu, D.G.; Băran, A.; Leontieş, A.R.; Popa, V.T.; Precupaş, A.; Sandu, R.; Stîngă, G.; Anghel, D.F. Interaction of piroxicam with bovine serum albumin investigated by spectroscopic, calorimetric and computational molecular methods. J. Biomol. Struct. Dyn. 2019, in press. [Google Scholar] [CrossRef]
- Dan, Q.; Xiong, W.; Liang, H.; Wu, D.; Zhan, F.; Chen, Y.; Ding, S.; Li, B. Characteristic of interaction mechanism between β-lactoglobulin and nobiletin: A multi-spectroscopic, thermodynamics methods and docking study. Food Res. Int. 2019, 120, 255–263. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Qin, P.; Zheng, X.; Hu, Z.; Zong, W.; Zhang, D.; Yang, B. Characterizing the noncovalent binding behavior of tartrazine to lysozyme: A combined spectroscopic and computational analysis. J. Biochem. Mol. Toxicol. 2019, 33, e22258. [Google Scholar] [CrossRef]
- Budryn, G.; Gałązka-Czarnecka, I.; Brzozowska, E.; Grzelczyk, J.; Mostowski, R.; Żyżelewicz, Ż.; Cerón-Carrasco, J.P.; Pérez-Sánchez, H. Evaluation of estrogenic activity of red clover (Trifolium pratense L.) sprouts cultivated under different conditions by content of isoflavones, calorimetric study and molecular modeling. Food Chem. 2018, 245, 324–336. [Google Scholar] [CrossRef] [PubMed]
- Budryn, G.; Grzelczyk, J.; Jaśkiewicz, A.; Żyżelewicz, D.; Pérez-Sánchez, H.; Cerón-Carrasco, J.P. Evaluation of butyrylcholinesterase inhibitory activity by chlorogenic acids and coffee extracts assed in ITC and docking simulation models. Food Res. Int. 2018, 109, 268–277. [Google Scholar] [CrossRef] [PubMed]
- Budryn, G.; Grzelczyk, J.; Pérez-Sánchez, H. Binding of red clover isoflavones to actin as a potential mechanism of anti-metastatic activity restricting the migration of cancer cells. Molecules 2018, 23, 2471. [Google Scholar] [CrossRef] [PubMed]
- Nelson, C.A.; Warren, J.T.; Wang, M.W.H.; Teitelbaum, S.L.; Fremont, D.H. RANKL employs distinct binding modes to engage RANK and the osteoprotegerin decoy receptor. Structure 2012, 20, 1971–1982. [Google Scholar] [CrossRef]
- Heinonen, S.M.; Wähälä, K.; Adlercreutz, H. Identification of urinary metabolites of the red clover isoflavones formononetin and biochanin A in human subjects. J. Agric. Food Chem. 2004, 52, 6802–6809. [Google Scholar] [CrossRef]
- Xiao, J.; Kai, G. A review of dietary polyphenol-plasma protein interactions: Characterization, influence on the bioactivity, and structure-affinity relationship. Crit. Rev. Food Sci. Nutr. 2012, 52, 85–101. [Google Scholar] [CrossRef]
- Mitchell, J.H.; Gardner, P.T.; McPhail, D.B.; Morrice, F.C.; Collins, A.R.; Duthie, G.G. Antioxidant efficacy of phytoestrogens in chemical and biological model systems. Arch. Biochem. Biophys. 1998, 360, 142–148. [Google Scholar] [CrossRef] [PubMed]
- Frazier, R.A.; Papadopoulou, A.; Green, R.J. Isothermal titration calorimetry study of epicatechin binding to serum albumin. J. Pharm. Biochem. Anal. 2006, 28, 1602–1605. [Google Scholar] [CrossRef] [PubMed]
- Du, X.; Li, Y.; Xia, Y.L.; Ai, S.M.; Liang, J.; Sang, P.; Ji, X.L.; Liu, S.Q. Insights into protein–ligand interactions: Mechanisms, models, and methods. Int. J. Mol. Sci. 2016, 17, 144. [Google Scholar] [CrossRef] [PubMed]
- Yu, C.; Zhang, P.; Lou, L.; Wang, Y. Perspectives regarding the role of biochanin A in humans. Front. Pharmacol. 2019, 10, 793. [Google Scholar] [CrossRef]
- Křížová, L.; Dadáková, K.; Kašparovská, J.; Kašparovský, T. Isoflavones. Molecules 2019, 24, 1076. [Google Scholar] [CrossRef]
- Prideaux, M.; Wijenayaka, A.R.; Kumarasinghe, D.D.; Ormsby, R.T.; Evdokiou, A.; Findlay, D.M.; Atkins, G.J. SaOS2 Osteosarcoma cells as an in vitro model for studying the transition of human osteoblasts to osteocytes. Calcif. Tissue Int. 2014, 95, 183–193. [V体育官网入口 - Google Scholar] [CrossRef]
- Czekanska, E.M.; Stoddart, M.J.; Richards, R.G.; Hayes, J.S. In search of an osteoblast cell model for in vitro research. Eur. Cell Mater. 2012, 24, 1–17. [Google Scholar] [CrossRef]
- Zheng, X.; Lee, S.K.; Chun, O.K. Soy isoflavones and osteoporotic bone loss: A review with an emphasis on modulation of bone remodeling. J. Med. Food 2016, 19, 1–14. ["V体育ios版" Google Scholar] [CrossRef]
- Uehara, M. Isoflavone metabolism and bone sparing effects of daidzein metabolites. J. Clin. Biochem. Nutr. 2013, 52, 193–201. [Google Scholar] [CrossRef]
- Moon, Y.J.; Sagawa, K.; Frederick, K.; Zhang, S.; Morris, M.E. Pharmacokinetics and bioavailability of the isoflavone biochanin A in rats. AAPS J. 2006, 8, E433–E442. [Google Scholar] [CrossRef]
- Torre, E. Molecular signaling mechanisms behind polyphenol-induced bone anabolism. Phytochem. Rev. 2017, 16, 1183–1226. [Google Scholar (V体育平台登录)] [CrossRef] [PubMed]
- Chen, W.-F.; Wong, M.-S. Genistein modulates the effects of parathyroid hormone in human osteoblastic SaOS-2 cells. Br. J. Nutr. 2006, 95, 1039–1047. [Google Scholar] [CrossRef] [PubMed]
- Su, S.-J.; Yeh, Y.-T.; Su, S.-H.; Chang, K.-L.; Shyu, H.-W.; Chen, K.-M.; Yeh, H. Biochanin A promotes osteogenic but inhibits adipogenic differentiation: Evidence with primary adipose-derived stem cells. Evid.-Based Complement. Altern. Med. 2013, 2013, 846039. [Google Scholar] [CrossRef] [PubMed]
- Jung, W.-K.; Choi, I.-W.; Hong, G.-E.; Pyun, C.-W.; Park, K.; Park, P.-J.; Seo, S.-K.; Choi, Y.H.; Lee, C.-H. Effects of isoflavone aglycone-rich fermented soybean paste extracts on osteoblastic differentiation of MG-63 Cells. J. Korean Soc. Appl. Biol. Chem. 2010, 53, 803–809. [Google Scholar] [CrossRef]
- Ho, M.-X.; Poon, C.C.; Wong, K.-C.; Qiu, Z.-C.; Wong, M.-S. Icariin, but not genistein, exerts osteogenic and anti-apoptotic effects in osteoblastic cells by selective activation of non-genomic ERα Signaling. Front. Pharmacol. 2018, 9, 474. [Google Scholar] [CrossRef]
- Bitto, A.; Burnett, B.P.; Polito, F.; Marini, H.; Levy, R.M.; Armbruster, M.A.; Minutoli, L.; Di Stefano, V.; Irrera, N.; Antoci, S.; et al. Effects of genistein aglycone in osteoporotic, ovariectomized rats: A comparison with alendronate, raloxifene and oestradiol. Br. J. Pharmacol. 2008, 155, 896–905. [Google Scholar (VSports在线直播)] [CrossRef]
- Jin, X.; Sunb, J.; Yuc, B.; Wanga, Y.; Sund, W.J.; Yangc, J.; Huangc, S.H.; Xieb, W. Daidzein stimulates osteogenesis facilitating proliferation, differentiation, and antiapoptosis in human osteoblast-like MG-63 cells via estrogen receptor–dependent MEK/ERK and PI3K/Akt activation. Nutr. Res. 2017, 42, 20–30. [Google Scholar] [CrossRef]
- Ha, H.; Lee, H.Y.; Lee, J.-H.; Jung, D.; Choi, J.; Song, K.-Y.; Jung, H.J.; Choi, J.S.; Chang, S.-I.; Kim, C. Formononetin prevents ovariectomy-induced bone loss in rats. Arch. Pharm. Res. 2010, 33, 625–632. [Google Scholar (VSports app下载)] [CrossRef]
- Huh, J.-E.; Seo, D.-M.; Baek, Y.-H.; Choi, D.-Y.; Park, D.-S.; Lee, J.-E. Biphasic positive effect of formononetin on metabolic activity of human normal and osteoarthritic subchondral osteoblasts. Int. Immunopharmacol. 2010, 10, 500–507. [Google Scholar] [CrossRef]
- Sun, J.-S.; Li, Y.-Y.; Liu, M.-H.; Sheu, S.-Y. Effects of coumestrol on neonatal and adult mice osteoblasts activities. J. Biomed. Mater. Res. 2007, 81, 214–223. [Google Scholar] [CrossRef]
- Sastry, G.M.; Adzhigirey, M.; Day, T.; Annabhimoju, R.; Sherman, W. Protein and ligand preparation: Parameters, protocols, and influence on virtual screening enrichments. J. Comput. Aided Mol. Des. 2013, 27, 221–234. [Google Scholar] [CrossRef] [PubMed]
- Gasteiger, J.; Marsili, M. Iterative partial equalization of orbital electronegativity—A rapid access to atomic charges. Tetrahedron 1980, 36, 3219–3228. ["VSports手机版" Google Scholar] [CrossRef]
- Trott, O.; Olson, A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 2010, 31, 455–461. [V体育平台登录 - Google Scholar] [CrossRef] [PubMed]
- Ghiacci, G.; Lumetti, S.; Manfredi, E.; Mori, D.; Macaluso, G.M.; Sala, R. Stanozolol promotes osteogenic gene expression and apposition of bone mineral in vitro. J. Appl. Oral Sci. 2019, 27, e20180014. [Google Scholar] [CrossRef] [PubMed]
- Muthusami, S.; Senthilkumar, K.; Vignesh, C.; Ilangovan, R.; Stanley, J.; Selvamurugan, N.; Srinivasan, N. Effects of Cissus quadrangularis on the proliferation, differentiation and matrix mineralization of human osteoblast like SaOS-2 Cells. J. Cell. Biochem. 2011, 112, 1035–1045. [Google Scholar] [CrossRef] [PubMed]
Isoflavone | KA × 103 (L/mol) | ∆H (kJ/mol) | ∆S (J/mol*K) | ∆G (kJ/mol) | ∆Gpredicted (kJ/mol) |
---|---|---|---|---|---|
Daidzein | 15.95 ± 4.05 | −0.05 ± 0.01 b | 78.94 ± 10.12 a | −22.82 | −23.65 a |
Formononetin | 3.14 ± 0.72 a | 0.19 ± 0.04 a | 67.61 ± 7.92 | −19.30 c | −23.23 a |
Genistein | 3.15 ± 0.59 a | 2.47 ± 0.48 | 75.69 ± 9.09 a | −19.34 c | −25.32 b |
Biochanin A | 1.20 ± 0.47 | 22.90 ± 4.09 | 138.42 ± 21.28 b | −17.00 | −25.53 b |
Coumestrol | 0.70 ± 0.11 | 18.55 ± 2.17 | 118.92 ± 17.11 | −15.74 a | −25.11 b |
OPG | 720.15 ± 95.41 | −10.80 ± 1.77 | 17.15 ± 2.54 | −15.72 a | - |
Daidzein + Formononetin | - | −21.94 ± 3.54 e | −19.47 ± 3.21 d | −16.33 | - |
Daidzein + Genistein | - | 21.10 ± 2.08 | 137.89 ± 18.03 b | −18.63 | - |
Daidzein + Biochanin A | - | −20.05 ± 4.17 e | −17.29 ± 4.19 d | −15.07 | - |
Daidzein + Coumestrol | - | −5.74 ± 0.90 c | 41.25 ± 5.12 | −17.63 b | - |
Formononetin + Genistein | - | 0.05 ± 0.02 a,b | 76.75 ± 15.07 a | −22.06 | - |
Formononetin + Biochanin A | - | −5.40 ± 0.82 c | 106.94 ± 11.34 | −36.22 | - |
Formononetin + Coumestrol | - | −8.42 ± 1.93 d | 32.98 ± 4.18 c | −17.92 | - |
Genistein + Biochanin A | - | −21.56 ± 5.73 e | −20.78 ± 3.05 | −15.57 a | - |
Genistein + Coumestrol | - | −15.37 ± 3.03 | 7.85 ± 1.83 | −17.63 b | - |
Biochanin A + Coumestrol | - | −8.50 ± 2.15 d | 30.66 ± 5.22 c | −17.33 b | - |
Isoflavone | IC50 [µM] |
---|---|
Biochanin A | 7.0 ± 0.3 |
Formononetin | 25 ± 1.5 |
Genistein | 10 ± 0.6 |
Coumestrol | 12 ± 0.3 |
Daidzein | 20 ± 1.5 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
"V体育官网" Share and Cite
Zakłos-Szyda, M.; Budryn, G.; Grzelczyk, J.; Pérez-Sánchez, H.; Żyżelewicz, D. Evaluation of Isoflavones as Bone Resorption Inhibitors upon Interactions with Receptor Activator of Nuclear Factor-κB Ligand (RANKL). Molecules 2020, 25, 206. https://doi.org/10.3390/molecules25010206
Zakłos-Szyda M, Budryn G, Grzelczyk J, Pérez-Sánchez H, Żyżelewicz D. Evaluation of Isoflavones as Bone Resorption Inhibitors upon Interactions with Receptor Activator of Nuclear Factor-κB Ligand (RANKL). Molecules. 2020; 25(1):206. https://doi.org/10.3390/molecules25010206
Chicago/Turabian StyleZakłos-Szyda, Małgorzata, Grażyna Budryn, Joanna Grzelczyk, Horacio Pérez-Sánchez, and Dorota Żyżelewicz. 2020. "Evaluation of Isoflavones as Bone Resorption Inhibitors upon Interactions with Receptor Activator of Nuclear Factor-κB Ligand (RANKL)" Molecules 25, no. 1: 206. https://doi.org/10.3390/molecules25010206
APA StyleZakłos-Szyda, M., Budryn, G., Grzelczyk, J., Pérez-Sánchez, H., & Żyżelewicz, D. (2020). Evaluation of Isoflavones as Bone Resorption Inhibitors upon Interactions with Receptor Activator of Nuclear Factor-κB Ligand (RANKL). Molecules, 25(1), 206. https://doi.org/10.3390/molecules25010206