Role Played by Paraoxonase-2 Enzyme in Cell Viability, Proliferation and Sensitivity to Chemotherapy of Oral Squamous Cell Carcinoma Cell Lines
Evaluation of PON2 silencing in OSCC cell lines. HSC-3 (A–C) and HOC621 (D–F) cells were transfected with plasmids coding shRNAs targeting PON2 (pLKO.1-647 or pLKO.1-647) and with empty vector (pLKO.1-puro). Enzyme expression was then evaluated at mRNA and protein level, by Real-Time PCR (A,D) and Western blot (B,E), followed by densitometry (C,F). Values are expressed as mean ± standard deviation (* p < 0.05; *** p < 0.005).
"> Figure 2In vitro effect of PON2 knockdown on cell viability and proliferation. Cell viability was measured by performing MTT (A,C) and trypan blue exclusion (B,D) assays, in both HSC-3 and HOC621 cell lines. Values are expressed as mean ± standard deviation (** p < 0.01; *** p < 0.005).
"> Figure 3Real-Time PCR analysis of cell proliferation and apoptosis induction in HSC-3 cells, following PON2 silencing. Expression of Ki-67 (A), Caspase-3 (B), -8 (C) and -9 (D) was evaluated in control (pLKO.1-puro) and PON2 downregulating (pLKO.1-647) cells. Values are expressed as mean ± standard deviation (* p < 0.05; ** p < 0.01; *** p < 0.005).
"> Figure 4Impact of chemotherapeutic drugs on cell viability of OSCC cells. MTT assay was used to evaluate the effect of CCDP treatment on cell viability of PON2 downregulating cells (pLKO.1-647) and controls (pLKO.1-puro), related with HSC-3 (A) and HOC621 (B) cell lines. Measurements were performed at 0, 24, 48, 72 and 96 h for HSC-3 and at 0, 24, 48 and 72 h for HOC621. All values are expressed as mean ± standard deviation (** p < 0.01; *** p < 0.005).
"> Figure 5Real-Time PCR analysis of cell proliferation and apoptosis induction in HSC-3 cells, treated with CDDP. Expression of Ki-67 (A), Caspase-3 (B), -8 (C) and -9 (D) was evaluated in control (pLKO.1-puro) and PON2 downregulating (pLKO.1-647) cells. Values are expressed as mean ± standard deviation (* p < 0.05; ** p < 0.01; *** p < 0.005).
"> Figure 6FTIRM analysis of CDDP-treated OSCC cell lines upon PON2 silencing. Statistical analysis of the following spectral markers, obtained for HSC-3 (A) and HOC621 (B) cell line: A3010/A2960 (unsaturation rate of lipids); A2925/A2960 (saturation rate of lipids); A1740/A1655 (oxidation rate of lipids), and A1170/A1655 (non-hydrogen bonded proteins). Data are presented as mean ± SD. Different letters indicate statistically significant differences within each sample (pLKO.1-puro and pLKO.1-647) at different time points (one-way ANOVA Tukey’s multiple comparisons test). Red asterisks indicate statistically significant differences between pLKO.1-puro and pLKO.1-647at each time point (Student’s t-test). (* p < 0.05).
"> Figure 6 Cont.FTIRM analysis of CDDP-treated OSCC cell lines upon PON2 silencing. Statistical analysis of the following spectral markers, obtained for HSC-3 (A) and HOC621 (B) cell line: A3010/A2960 (unsaturation rate of lipids); A2925/A2960 (saturation rate of lipids); A1740/A1655 (oxidation rate of lipids), and A1170/A1655 (non-hydrogen bonded proteins). Data are presented as mean ± SD. Different letters indicate statistically significant differences within each sample (pLKO.1-puro and pLKO.1-647) at different time points (one-way ANOVA Tukey’s multiple comparisons test). Red asterisks indicate statistically significant differences between pLKO.1-puro and pLKO.1-647at each time point (Student’s t-test). (* p < 0.05).
"> Figure 7Western blot analysis of PON2 expression in control and CDDP-resistant HOC621 cells. Aliquots (20 µg) of protein extract were subjected to 12.5% SDS-PAGE and transferred to polyvinylidene fluoride membrane. Blots were probed with rabbit anti-PON2 or anti-β-actin antibodies, and analyzed with chemiluminescence (A). Densitometry was subsequently used to evaluate signal intensity of chemiluminescent bands and statistical analysis was performed to compare PON2 expression levels between chemo-resistant and parental cells (B). Values are expressed as mean ± standard deviation (*** p < 0.005).
"> Figure 8Impact of chemotherapeutic drugs on cell viability of OSCC cells. MTT assay was used to evaluate the effect of CCDP treatment (6.4 µg/mL) on cell viability of selected CDDP-resistant HOC621 and parental cells. Measurements were performed at 48 h and results were reported as percentage of the control (control equals 100% and corresponds to the absorbance value of each sample grown in DMEM at 48 h time point). All values are expressed as mean ± standard deviation (*** p < 0.005).
">
Abstract
Oral squamous cell carcinoma represents the most aggressive and frequent form of head and neck cancer. Due to drug resistance, the 5-year survival rate of patients with advanced disease is less than 50%. In order to identify molecular targets for effective oral cancer treatment, we focused on paraoxonase-2 enzyme. Indeed, based on data previously obtained from preliminary immunohistochemistry and Western blot analyses performed on tissue specimens, the enzyme was found to be upregulated in tumor compared with normal oral mucosa. Therefore, paraoxonase-2 gene silencing was achieved in HSC-3 and HOC621 oral cancer cell lines, and the effect on cell proliferation, viability, apoptosis induction and sensitivity to cisplatin and 5-fluorouracil treatment was evaluated. Fourier Transform InfraRed Microspectroscopy analyzed alterations of cellular macromolecules upon treatment. Enzyme level and cell proliferation were also determined in cisplatin-resistant clones obtained from HOC621 cell line, as well as in parental cells. Reported data showed that paraoxonase-2 knockdown led to a reduction of cell proliferation and viability, as well as to an enhancement of sensitivity to cisplatin, together with the activation of apoptosis pathway. Spectroscopical data demonstrated that, under treatment with cisplatin, oxidative damage exerted on lipids and proteins was markedly more evident in cells down-regulating paraoxonase-2 compared to controls. Interestingly, enzyme expression, as well as cell proliferation were significantly higher in cisplatin-resistant compared with control HOC621 cells. Taken together these results seem to candidate the enzyme as a promising target for molecular treatment of this neoplasm V体育官网入口. Keywords: OSCC; PON2; cell growth; chemosensitivity .1. Introduction
2. Results
2.1. Efficiency of PON2 Silencing in HSC-3 and HOC621 Cells
2.2. Effect of PON2 Downregulation on Viability, Proliferation and Apoptosis Induction of OSCC Cells
2.3. Impact of PON2 Knockdown on Sensitivity of OSCC Cell Lines to Treatment with CDDP and 5-FU
V体育2025版 - 2.4. FTIRM Data Analysis of Effects Induced by CDDP Treatment on PON2-Silenced and Control OSCC Cell Lines
2.5. PON2 Expression Level in CDDP-Resistant and Control HOC621 Cells
3. Discussion
4. Materials and Methods
VSports - 4.1. Cell Lines and Culture Conditions
4.2. PON2 shRNA-Mediated Gene Silencing
"VSports app下载" 4.3. Real-Time PCR Assay
4.4. Western Blot Analysis
VSports app下载 - 4.5. Cell Viability and Proliferation Assays
4.6. Chemotherapeutic Treatment
4.7. Fourier Transform InfraRed Microspectroscopy Analysis (V体育官网)
4.8. Development of CDDP-Resistant OSCC Cell Clones (V体育官网)
4.9. Statistical Analysis
Supplementary Materials (V体育安卓版)
Author Contributions
Funding
Institutional Review Board Statement (VSports在线直播)
"VSports app下载" Informed Consent Statement
Data Availability Statement
Conflicts of Interest (VSports app下载)
References
- Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2020. CA Cancer J. Clin. 2020, 70, 7–30. [Google Scholar] [CrossRef] [PubMed]
- Ali, J.; Sabiha, B.; Jan, H.U.; Haider, S.A.; Khan, A.A.; Ali, S.S. Genetic etiology of oral cancer. Oral Oncol. 2017, 70, 23–28. [Google Scholar] [CrossRef] [PubMed]
- D’Cruz, A.K.; Vaish, R.; Dhar, H. Oral cancers: Current status. Oral Oncol. 2018, 87, 64–69. [Google Scholar] [CrossRef] [PubMed]
- Rivera, C. Essentials of oral cancer. Int. J. Clin. Exp. Pathol. 2015, 8, 11884–11894. [Google Scholar] [PubMed]
- Belcher, R.; Hayes, K.; Fedewa, S.; Chen, A.Y. Current treatment of head and neck squamous cell cancer. J. Surg. Oncol. 2014, 110, 551–574. [Google Scholar] [CrossRef]
- Huang, S.H.; O Sullivan, B. Oral cancer: Current role of radiotherapy and chemotherapy. Med. Oral Patol. Oral Cir. Bucal. 2013, 18, e233–e240. [Google Scholar] [CrossRef]
- Pandey, M.; Kannepali, K.K.; Dixit, R.; Kumar, M. Effect of neoadjuvant chemotherapy and its correlation with HPV status, EGFR, Her-2-neu, and GADD45 expression in oral squamous cell carcinoma. World J. Surg. Oncol. 2018, 16, 20. [Google Scholar (V体育平台登录)] [CrossRef]
- Law, Z.-J.; Khoo, X.H.; Lim, P.T.; Goh, B.H.; Ming, L.C.; Lee, W.-L.; Goh, H.P. Extracellular Vesicle-Mediated Chemoresistance in Oral Squamous Cell Carcinoma. Front. Mol. Biosci. 2021, 8, 629888. [VSports - Google Scholar] [CrossRef]
- Haddad, R.; Posner, M.; Hitt, R.; Cohen, E.; Schulten, J.; Lefebvre, J.-L.; Vermorken, J. Induction chemotherapy in locally advanced squamous cell carcinoma of the head and neck: Role, controversy, and future directions. Ann. Oncol. 2018, 29, 1130–1140. [Google Scholar (VSports app下载)] [CrossRef]
- Shriwas, O.; Arya, R.; Mohanty, S.; Mohapatra, P.; Kumar, S.; Rath, R.; Kaushik, S.R.; Pahwa, F.; Murmu, K.C.; Majumdar, S.K.D.; et al. RRBP1 rewires cisplatin resistance in oral squamous cell carcinoma by regulating Hippo pathway. Br. J. Cancer 2021, 124, 2004–2016. [Google Scholar] [CrossRef]
- She, Z.-G.; Chen, H.-Z.; Yan, Y.; Li, H.; Liu, D.-P. The Human Paraoxonase Gene Cluster as a Target in the Treatment of Atherosclerosis. Antioxid. Redox Signal. 2012, 16, 597–632. [Google Scholar (VSports最新版本)] [CrossRef] [PubMed]
- Ng, C.J.; Wadleigh, D.J.; Gangopadhyay, A.; Hama, S.; Grijalva, V.R.; Navab, M.; Fogelman, A.M.; Reddy, S.T. Paraoxonase-2 Is a Ubiquitously Expressed Protein with Antioxidant Properties and Is Capable of Preventing Cell-mediated Oxidative Modification of Low Density Lipoprotein. J. Biol. Chem. 2001, 276, 44444–44449. ["V体育2025版" Google Scholar] [CrossRef] [PubMed]
- Précourt, L.-P.; Marcil, V.; Ntimbane, T.; Taha, R.; Lavoie, J.-C.; Delvin, E.; Seidman, E.G.; Beaulieu, J.-F.; Levy, E. Antioxidative properties of paraoxonase 2 in intestinal epithelial cells. Am. J. Physiol. Liver Physiol. 2012, 303, G623–G634. [Google Scholar] [CrossRef]
- Giordano, G.; Cole, T.B.; Furlong, C.E.; Costa, L.G. Paraoxonase 2 (PON2) in the mouse central nervous system: A neuroprotective role? Toxicol. Appl. Pharmacol. 2011, 256, 369–378. [Google Scholar] [CrossRef] [PubMed]
- Horke, S.; Witte, I.; Wilgenbus, P.; Krüger, M.; Strand, D.; Förstermann, U. Paraoxonase-2 Reduces Oxidative Stress in Vascular Cells and Decreases Endoplasmic Reticulum Stress-Induced Caspase Activation. Circulation 2007, 115, 2055–2064. ["VSports最新版本" Google Scholar] [CrossRef] [PubMed]
- Altenhöfer, S.; Witte, I.; Teiber, J.F.; Wilgenbus, P.; Pautz, A.; Li, H.; Daiber, A.; Witan, H.; Clement, A.M.; Förstermann, U.; et al. One enzyme, two functions: PON2 prevents mitochondrial superoxide formation and apoptosis independent from its lactonase activity. J. Biol. Chem. 2010, 285, 24398–24403. [Google Scholar] [CrossRef]
- Devarajan, A.; Bourquard, N.; Hama, S.; Navab, M.; Grijalva, V.R.; Morvardi, S.; Clarke, C.F.; Vergnes, L.; Reue, K.; Teiber, J.F.; et al. Paraoxonase 2 Deficiency Alters Mitochondrial Function and Exacerbates the Development of Atherosclerosis. Antioxid. Redox. Signal. 2011, 14, 341–351. [Google Scholar] [CrossRef]
- Hagmann, H.; Kuczkowski, A.; Ruehl, M.; Lamkemeyer, T.; Brodesser, S.; Horke, S.; Dryer, S.; Schermer, B.; Benzing, T.; Brinkkoetter, P.T. Breaking the chain at the membrane: Paraoxonase 2 counteracts lipid peroxidation at the plasma membrane. FASEB J. 2014, 28, 1769–1779. [Google Scholar] [CrossRef]
- Bacchetti, T.; Sartini, D.; Pozzi, V.; Cacciamani, T.; Ferretti, G.; Emanuelli, M. Exploring the role of Paraoxonase-2 in bladder cancer: Analyses performed on tissue samples, urines and cell cultures. Oncotarget 2017, 8, 28785–28795. [Google Scholar] [CrossRef]
- Devarajan, A.; Su, F.; Grijalva, V.; Yalamanchi, M.; Yalamanchi, A.; Gao, F.; Trost, H.; Nwokedi, J.; Farias-Eisner, G.; Farias-Eisner, R.; et al. Paraoxonase 2 overexpression inhibits tumor development in a mouse model of ovarian cancer. Cell Death Dis. 2018, 9, 392. [V体育安卓版 - Google Scholar] [CrossRef]
- Nagarajan, A.; Dogra, S.K.; Sun, L.; Gandotra, N.; Ho, T.; Cai, G.; Cline, G.; Kumar, P.; Cowles, R.A.; Wajapeyee, N. Paraoxonase 2 Facilitates Pancreatic Cancer Growth and Metastasis by Stimulating GLUT1-Mediated Glucose Transport. Mol. Cell 2017, 67, 685–701.e6. ["VSports手机版" Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Xu, G.; Zhang, J.; Wang, S.; Ji, M.; Mo, L.; Zhu, M.; Li, J.; Zhou, G.; Lu, J.; et al. The clinical and prognostic significance of paraoxonase-2 in gastric cancer patients: Immunohistochemical analysis. Hum. Cell 2019, 32, 487–494. [Google Scholar] [CrossRef] [PubMed]
- Bacchetti, T.; Salvolini, E.; Pompei, V.; Campagna, R.; Molinelli, E.; Brisigotti, V.; Togni, L.; Lucarini, G.; Sartini, D.; Campanati, A.; et al. Paraoxonase-2: A potential biomarker for skin cancer aggressiveness. Eur. J. Clin. Investig. 2020, 51, e13452. [Google Scholar (VSports在线直播)] [CrossRef]
- Krüger, M.; Pabst, A.M.; Al-Nawas, B.; Horke, S.; Moergel, M. Paraoxonase-2 (PON2) protects oral squamous cell cancer cells against irradiation-induced apoptosis. J. Cancer Res. Clin. Oncol. 2015, 141, 1757–1766. ["VSports在线直播" Google Scholar] [CrossRef]
- Notarstefano, V.; Belloni, A.; Sabbatini, S.; Pro, C.; Orilisi, G.; Monterubbianesi, R.; Tosco, V.; Byrne, H.J.; Vaccari, L.; Giorgini, E. Cytotoxic Effects of 5-Azacytidine on Primary Tumour Cells and Cancer Stem Cells from Oral Squamous Cell Carcinoma: An In Vitro FTIRM Analysis. Cells 2021, 10, 2127. [V体育平台登录 - Google Scholar] [CrossRef]
- Notarstefano, V.; Sabbatini, S.; Pro, C.; Belloni, A.; Orilisi, G.; Rubini, C.; Byrne, H.J.; Vaccari, L.; Giorgini, E. Exploiting fourier transform infrared and Raman microspectroscopies on cancer stem cells from oral squamous cells carcinoma: New evidence of acquired cisplatin chemoresistance. Analyst 2020, 145, 8038–8049. [Google Scholar] [CrossRef]
- Notarstefano, V.; Sabbatini, S.; Sabbatini, M.; Arrais, A.; Belloni, A.; Pro, C.; Vaccari, L.; Osella, D.; Giorgini, E. Hyperspectral characterization of the MSTO-211H cell spheroid model: A FPA-FTIR imaging approach. Clin. Spectrosc. 2021, 3, 100011. [VSports最新版本 - Google Scholar] [CrossRef]
- Kabsch, W.; Sander, C. Dictionary of protein secondary structure: Pattern recognition of hydrogen-bonded and geometrical features. Biopolymers 1983, 22, 2577–2637. ["VSports" Google Scholar] [CrossRef] [PubMed]
- Vileno, B.; Jeney, S.; Sienkiewicz, A.; Marcoux, P.; Miller, L.; Forró, L. Evidence of lipid peroxidation and protein phosphorylation in cells upon oxidative stress photo-generated by fullerols. Biophys. Chem. 2010, 152, 164–169. [Google Scholar] [CrossRef] [PubMed]
- Notarstefano, V.; Pisani, M.; Bramucci, M.; Quassinti, L.; Maggi, F.; Vaccari, L.; Parlapiano, M.; Giorgini, E.; Astolfi, P. A vibrational in vitro approach to evaluate the potential of monoolein nanoparticles as isofuranodiene carrier in MDA-MB 231 breast cancer cell line: New insights from Infrared and Raman microspectroscopies. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2021, 269, 120735. [Google Scholar] [CrossRef]
- Wu, B.-B.; Gong, Y.-P.; Wu, X.-H.; Chen, Y.-Y.; Chen, F.-F.; Jin, L.-T.; Cheng, B.-R.; Hu, F.; Xiong, B. Fourier transform infrared spectroscopy for the distinction of MCF-7 cells treated with different concentrations of 5-fluorouracil. J. Transl. Med. 2015, 13, 108. [Google Scholar] [CrossRef] [PubMed]
- Atashi, F.; Vahed, N.; Emamverdizadeh, P.; Fattahi, S.; Paya, L. Drug resistance against 5-fluorouracil and cisplatin in the treatment of head and neck squamous cell carcinoma: A systematic review. J. Dent. Res. Dent. Clin. Dent. Prospect. 2021, 15, 219–225. [Google Scholar] [CrossRef] [PubMed]
- Kanno, Y.; Chen, C.-Y.; Lee, H.-L.; Chiou, J.-F.; Chen, Y.-J. Molecular Mechanisms of Chemotherapy Resistance in Head and Neck Cancers. Front. Oncol. 2021, 11, 640392. ["VSports在线直播" Google Scholar] [CrossRef]
- Xuelei, M.; Jingwen, H.; Wei, D.; Hongyu, Z.; Jing, Z.; Changle, S.; Lei, L. ERCC1 plays an important role in predicting survival outcomes and treatment response for patients with HNSCC: A meta-analysis. Oral Oncol. 2015, 51, 483–492. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Liu, H.-C.; Wang, C.; Liu, X.; Hu, F.-C.; Xie, N.; Lü, L.; Chen, X.; Huang, H.-Z. Overexpression of β-Catenin Induces Cisplatin Resistance in Oral Squamous Cell Carcinoma. BioMed Res. Int. 2016, 2016, 5378567. [Google Scholar] [CrossRef]
- Zhang, B.; Liu, M.; Tang, H.-K.; Ma, H.-B.; Wang, C.; Chen, X.; Huang, H.-Z. The expression and significance of MRP1, LRP, TOPOIIβ, and BCL2 in tongue squamous cell carcinoma. J. Oral Pathol. Med. 2011, 41, 141–148. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.-H.; Feng, Z.-E.; Yan, M.; Hanada, S.; Zuo, H.; Yang, C.-Z.; Han, Z.-G.; Guo, W.; Chen, W.-T.; Zhang, P. XIAP Is a Predictor of Cisplatin-Based Chemotherapy Response and Prognosis for Patients with Advanced Head and Neck Cancer. PLoS ONE 2012, 7, e31601. [Google Scholar (V体育ios版)] [CrossRef] [PubMed]
- Santarelli, A.; Mascitti, M.; Rubini, C.; Bambini, F.; Giannatempo, G.; Russo, L.L.; Sartini, D.; Emanuelli, M.; Procaccini, M.; Muzio, L.L. Nuclear Survivin as a Prognostic Factor in Squamous-Cell Carcinoma of the Oral Cavity. Appl. Immunohistochem. Mol. Morphol. 2017, 25, 566–570. [Google Scholar (V体育安卓版)] [CrossRef] [PubMed]
- Wyatt, M.D.; Wilson, D.M., III. Participation of DNA repair in the response to 5-fluorouracil. Cell. Mol. Life Sci. 2009, 66, 788–799. [Google Scholar] [CrossRef]
- Nagata, M.; Nakayama, H.; Tanaka, T.; Yoshida, R.; Yoshitake, Y.; Fukuma, D.; Kawahara, K.; Nakagawa, Y.; Ota, K.; Hiraki, A.; et al. Overexpression of cIAP2 contributes to 5-FU resistance and a poor prognosis in oral squamous cell carcinoma. Br. J. Cancer 2011, 105, 1322–1330. [Google Scholar] [CrossRef] [PubMed]
- Witte, I.; Foerstermann, U.; Devarajan, A.; Reddy, S.T.; Horke, S. Protectors or Traitors: The Roles of PON2 and PON3 in Atherosclerosis and Cancer. J. Lipids 2012, 2012, 342806. [Google Scholar] [CrossRef] [PubMed]
- Longley, D.B.; Harkin, D.P.; Johnston, P.G. 5-Fluorouracil: Mechanisms of action and clinical strategies. Nat. Rev. Cancer 2003, 3, 330–338. ["VSports app下载" Google Scholar] [CrossRef] [PubMed]
- Dasari, S.; Tchounwou, P.B. Cisplatin in cancer therapy: Molecular mechanisms of action. Eur. J. Pharmacol. 2014, 740, 364–378. [Google Scholar] [CrossRef] [PubMed]
- Fumarola, S.; Cecati, M.; Sartini, D.; Ferretti, G.; Milanese, G.; Galosi, A.B.; Pozzi, V.; Campagna, R.; Morresi, C.; Emanuelli, M.; et al. Bladder Cancer Chemosensitivity Is Affected by Paraoxonase-2 Expression. Antioxidants 2020, 9, 175. [Google Scholar] [CrossRef] [PubMed]
- Witte, I.; Altenhöfer, S.; Wilgenbus, P.; Amort, J.; Clement, A.M.; Pautz, A.; Li, H.; Förstermann, U.; Horke, S. Beyond reduction of atherosclerosis: PON2 provides apoptosis resistance and stabilizes tumor cells. Cell Death Dis. 2011, 2, e112. [VSports注册入口 - Google Scholar] [CrossRef] [PubMed]
- Krüger, M.; Amort, J.; Wilgenbus, P.; Helmstädter, J.P.; Grechowa, I.; Ebert, J.; Tenzer, S.; Moergel, M.; Witte, I.; Horke, S. The anti-apoptotic PON2 protein is Wnt/β-catenin-regulated and correlates with radiotherapy resistance in OSCC patients. Oncotarget 2016, 7, 51082–51095. [Google Scholar] [CrossRef]
- Campagna, R.; Bacchetti, T.; Salvolini, E.; Pozzi, V.; Molinelli, E.; Brisigotti, V.; Sartini, D.; Campanati, A.; Ferretti, G.; Offidani, A.; et al. Paraoxonase-2 Silencing Enhances Sensitivity of A375 Melanoma Cells to Treatment with Cisplatin. Antioxidants 2020, 9, 1238. [V体育官网 - Google Scholar] [CrossRef]
- Chen, Y.-J.; Chen, S.-Y.; Lovel, R.; Ku, Y.-C.; Lai, Y.-H.; Hung, C.-L.; Li, Y.-F.; Lu, Y.-C.; Tai, C.-K. Enhancing chemosensitivity in oral squamous cell carcinoma by lentivirus vector-mediated RNA interference targeting EGFR and MRP2. Oncol. Lett. 2016, 12, 2107–2114. ["VSports手机版" Google Scholar] [CrossRef]
- Hung, C.-C.; Chien, C.-Y.; Chu, P.-Y.; Wu, Y.-J.; Lin, C.-S.; Huang, C.-J.; Chan, L.-P.; Wang, Y.-Y.; Yuan, S.-S.F.; Hour, T.-C.; et al. Differential resistance to platinum-based drugs and 5-fluorouracil in p22phox-overexpressing oral squamous cell carcinoma: Implications of alternative treatment strategies. Head Neck 2017, 39, 1621–1630. [Google Scholar] [CrossRef]
- Gioacchini, G.; Notarstefano, V.; Sereni, E.; Zacà, C.; Coticchio, G.; Giorgini, E.; Vaccari, L.; Carnevali, O.; Borini, A. Does the molecular and metabolic profile of human granulosa cells correlate with oocyte fate? New insights by Fourier transform infrared microspectroscopy analysis. Mol. Hum. Reprod. 2018, 24, 521–532. [Google Scholar] [CrossRef]
- Notarstefano, V.; Gioacchini, G.; Byrne, H.J.; Zacà, C.; Sereni, E.; Vaccari, L.; Borini, A.; Carnevali, O.; Giorgini, E. Vibrational characterization of granulosa cells from patients affected by unilateral ovarian endometriosis: New insights from infrared and Raman microspectroscopy. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2019, 212, 206–214. [Google Scholar] [CrossRef] [PubMed]
- Giorgini, E.; Sabbatini, S.; Rocchetti, R.; Notarstefano, V.; Rubini, C.; Conti, C.; Orilisi, G.; Mitri, E.; Bedolla, D.E.; Vaccari, L. In vitro FTIR microspectroscopy analysis of primary oral squamous carcinoma cells treated with cisplatin and 5-fluorouracil: A new spectroscopic approach for studying the drug-cell interaction. Analyst 2018, 143, 3317–3326. [Google Scholar] [CrossRef] [PubMed]
- McDermott, M.; Eustace, A.J.; Busschots, S.; Breen, L.; Crown, J.; Clynes, M.; O’Donovan, N.; Stordal, B.; O’Donovan, N. In vitro Development of Chemotherapy and Targeted Therapy Drug-Resistant Cancer Cell Lines: A Practical Guide with Case Studies. Front. Oncol. 2014, 4, 40. ["VSports" Google Scholar] [CrossRef] [PubMed]
Target Gene | Sequence |
---|---|
PON2 | Forward 5′-TCGTGTATGACCCGAACAATCC-3′ Reverse 5′-AACTGTAGTCACTGTAGGCTTCTC-3′ |
Ki-67 | Forward 5′-GACATCCGTATCCAGCTTCC-3′ Reverse 5′-CCGTACAGGCTCATCAATAAC-3′ |
Caspase-3 | Forward 5′-TGGAACCAAAGATCATACATGG-3′ Reverse 5′-CAGACCGAGATGTCATTCCA-3′ |
Caspase-8 | Forward 5′-GATGATGACATGAACCTGCTG-3′ Reverse 5′-TTTGCTGAATTCTTCATAGTCGTT-3′ |
Caspase-9 | Forward 5′-TACTTTCCCAGGTTTTGTTTCC-3′ Reverse 5′-AAAGCAACCAGGCATCTGTT-3′ |
β-actin | Forward 5′-TCCTTCCCTGGGCATGGAGT-3′ Reverse 5′-AGCACTGTGTTGGCGTACAG-3′ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Campagna, R.; Belloni, A.; Pozzi, V.; Salvucci, A.; Notarstefano, V.; Togni, L.; Mascitti, M.; Sartini, D.; Giorgini, E.; Salvolini, E.; et al. Role Played by Paraoxonase-2 Enzyme in Cell Viability, Proliferation and Sensitivity to Chemotherapy of Oral Squamous Cell Carcinoma Cell Lines. Int. J. Mol. Sci. 2023, 24, 338. https://doi.org/10.3390/ijms24010338
Campagna R, Belloni A, Pozzi V, Salvucci A, Notarstefano V, Togni L, Mascitti M, Sartini D, Giorgini E, Salvolini E, et al. Role Played by Paraoxonase-2 Enzyme in Cell Viability, Proliferation and Sensitivity to Chemotherapy of Oral Squamous Cell Carcinoma Cell Lines. International Journal of Molecular Sciences. 2023; 24(1):338. https://doi.org/10.3390/ijms24010338
Chicago/Turabian StyleCampagna, Roberto, Alessia Belloni, Valentina Pozzi, Alessia Salvucci, Valentina Notarstefano, Lucrezia Togni, Marco Mascitti, Davide Sartini, Elisabetta Giorgini, Eleonora Salvolini, and et al. 2023. "Role Played by Paraoxonase-2 Enzyme in Cell Viability, Proliferation and Sensitivity to Chemotherapy of Oral Squamous Cell Carcinoma Cell Lines" International Journal of Molecular Sciences 24, no. 1: 338. https://doi.org/10.3390/ijms24010338
APA StyleCampagna, R., Belloni, A., Pozzi, V., Salvucci, A., Notarstefano, V., Togni, L., Mascitti, M., Sartini, D., Giorgini, E., Salvolini, E., Santarelli, A., Lo Muzio, L., & Emanuelli, M. (2023). Role Played by Paraoxonase-2 Enzyme in Cell Viability, Proliferation and Sensitivity to Chemotherapy of Oral Squamous Cell Carcinoma Cell Lines. International Journal of Molecular Sciences, 24(1), 338. https://doi.org/10.3390/ijms24010338