"V体育ios版" Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The . gov means it’s official. Federal government websites often end in . gov or . mil. Before sharing sensitive information, make sure you’re on a federal government site VSports app下载. .

Https

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely. V体育官网.

. 2017 Mar 1;127(3):790-792.
doi: 10.1172/JCI92823. Epub 2017 Feb 20.

VSports手机版 - Building discontinuous liver sinusoidal vessels

Building discontinuous liver sinusoidal vessels

Courtney T Griffin et al. J Clin Invest. .

Abstract

Blood vessels have a unified mission to circulate blood throughout the body; however, they have additional diverse and specialized roles in various organs. For example, in the liver, discontinuous sinusoids, which are fenestrated capillaries with intercellular gaps and a fragmented basement membrane, facilitate delivery of macromolecules to highly metabolic hepatocytes. During embryonic development, discontinuous sinusoids also allow circulating hematopoietic progenitor and stem cells to populate the liver and promote blood cell differentiation. In this issue of the JCI, Géraud et al. describe an essential role for the transcription factor GATA4 in promoting the development of discontinuous sinusoids VSports手机版. In the absence of liver sinusoidal GATA4, mouse embryos developed hepatic capillaries with upregulated endothelial cell junction proteins and a continuous basement membrane. These features prevented hematopoietic progenitor cells from transmigrating into the developing liver, and Gata4-mutant embryos died from subsequent liver hypoplasia and anemia. This study highlights the surprising and extensive transcriptional control GATA4 exercises over specialized liver vascular development and function. .

PubMed Disclaimer

V体育2025版 - Conflict of interest statement

Conflict of interest: The authors have declared that no conflict of interest exists.

Figures

Figure 1
Figure 1. Gata4 deletion alters liver sinusoid morphology.
Genetic deletion of the transcription factor Gata4 from liver sinusoidal endothelial cells (LSECs) causes upregulation of endothelial cell junction proteins and robust deposition of basement membrane proteins that prevent circulating hematopoietic progenitor or stem cells from colonizing the fetal liver (11). The consequences of this transition from discontinuous sinusoidal to continuous capillary morphology are liver hypoplasia, anemia, and lethality of Gata4 mutant embryos (11).

Comment on (VSports手机版)

  • GATA4-dependent organ-specific endothelial differentiation controls liver development and embryonic hematopoiesis

References (V体育官网入口)

    1. Pavelka M, Roth J. Functional Ultrastructure: Atlas of Tissue Biology and Pathology. Vienna, Austria: Springer Vienna; 2010:254–255.
    1. Sarin H. Physiologic upper limits of pore size of different blood capillary types and another perspective on the dual pore theory of microvascular permeability. J Angiogenes Res. 2010;2:14. - V体育2025版 - PMC - PubMed
    1. Cleaver O, Melton DA. Endothelial signaling during development. Nat Med. 2003;9(6):661–668. doi: 10.1038/nm0603-661. - DOI - PubMed
    1. Aird WC. Phenotypic heterogeneity of the endothelium: I. Structure, function, and mechanisms. Circ Res. 2007;100(2):158–173. doi: 10.1161/01.RES.0000255691.76142.4a. - DOI - PubMed
    1. Gomez Perdiguero E, et al. Tissue-resident macrophages originate from yolk-sac-derived erythro-myeloid progenitors. Nature. 2015;518(7540):547–551. - "V体育官网入口" PMC - PubMed