Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The . gov means it’s official. Federal government websites often end in VSports app下载. gov or . mil. Before sharing sensitive information, make sure you’re on a federal government site. .

Https

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely V体育官网. .

. 2008 Oct;33(4):871-9.

Premature chromosome condensation reveals DNA-PK independent pathways of chromosome break repair

Affiliations
  • PMID: 18813802

Premature chromosome condensation reveals DNA-PK independent pathways of chromosome break repair

Georgia I Terzoudi et al. Int J Oncol. 2008 Oct.

Abstract

Cells of higher eukaryotes process double strand breaks (DSBs) in their genome using a non-homologous end joining apparatus that utilizes DNA-PK and other well characterized factors (D-NHEJ). Cells with defects in D-NHEJ, repair the majority of DSBs using a slow-repair pathway which is independent of genes of the RAD52 epistasis group and functions as a backup (B-NHEJ) VSports手机版. Recent studies implicate DNA ligase III, PARP-1 and histone H1 in this pathway of NHEJ. The present study investigates the operation of B-NHEJ in the repair of interphase chromosome breaks visualized in irradiated G0 human lymphocytes by premature chromosome condensation (PCC). Chromosome breaks are effectively repaired in human lymphocytes, but repair is significantly compromised after treatment with wortmannin, a DNA-PK inhibitor. Despite slower kinetics, cells exposed to wortmannin rejoin the majority of IR induced chromosome breaks suggesting that B-NHEJ is also functional at the chromosome level. Complementation of D-NHEJ defect in wortmannin-treated lymphocytes by newly made DNA-PK is only possible under conditions of nuclear envelope break down and premature chromosome condensation, suggesting that in interphase cells the shunting of chromosome breaks from D-NHEJ to B-NHEJ is irreversible. The understanding of chromosomal aberration formation allows mechanistic explanations for the carcinogenic potential of D-NHEJ defects. .

PubMed Disclaimer

Publication types

MeSH terms