Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The . gov means it’s official. Federal government websites often end in . gov or . mil VSports app下载. Before sharing sensitive information, make sure you’re on a federal government site. .

Https

The site is secure V体育官网. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely. .

. 1993 Jun 15;90(12):5648-52.
doi: 10.1073/pnas.90.12.5648.

Identification of a human achaete-scute homolog highly expressed in neuroendocrine tumors

Affiliations

Identification of a human achaete-scute homolog highly expressed in neuroendocrine tumors

D W Ball (V体育官网入口) et al. Proc Natl Acad Sci U S A. .

Abstract

Basic helix-loop-helix transcription factors of the achaete-scute family are instrumental in Drosophila neurosensory development and are candidate regulators of development in the mammalian central nervous system and neural crest. We report the isolation and initial characterization of a human achaete-scute homolog that is highly expressed in two neuroendocrine cancers, medullary thyroid cancer (MTC) and small cell lung cancer (SCLC). The human gene, which we have termed human achaete-scute homology 1 (hASH1), was cloned from a human MTC cDNA library. It encodes a predicted protein of 238 aa that is 95% homologous to mammalian achaete-scute homolog (MASH) 1, a rodent basic helix-loop-helix factor. The 57-residue basic helix-loop-helix domain is identical to that in the rodent gene, and the basic and helical regions, excluding the loop, are 72-80% identical to Drosophila achaete-scute family members. The proximal coding region of the hASH1 cDNA contains a striking 14-copy repeat of the triplet CAG that exhibits polymorphism in human genomic DNA. Thus, hASH1 is a candidate locus for disease-causing mutations via triplet repeat amplification VSports手机版. Analysis of rodent-human somatic cell hybrids permitted assignment of hASH1 to human chromosome 12. Northern blots revealed hASH1 transcripts in RNA from a human MTC cell line, two fresh MTC tumors, fetal brain, and three lines of human SCLC. In contrast, cultured lines of non-SCLC lung cancers and a panel of normal adult human tissues showed no detectable hASH1 transcripts. Expression of hASH1 may provide a useful marker for cancers with neuroendocrine features and may contribute to the differentiation and growth regulation of these cells. .

PubMed Disclaimer

References

    1. Ann Intern Med. 1978 Jun;88(6):805-6 - PubMed
    1. Nat Genet. 1992 Nov;2(3):186-91 - PubMed
    1. Anticancer Res. 1981;1(6):317-22 - PubMed
    1. Cancer Res. 1985 Jun;45(6):2913-23 - PubMed
    1. EMBO J. 1985 Mar;4(3):715-24 - PubMed

Publication types

MeSH terms

Substances (VSports最新版本)

Associated data