Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The . gov means it’s official. Federal government websites often end in . gov or . mil. Before sharing sensitive information, make sure you’re on a federal government site. VSports app下载.

Https

The site is secure V体育官网. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely. .

Review
. 2017 Aug 8;24(1):53.
doi: 10.1186/s12929-017-0358-4.

Long non-coding RNA and tumor hypoxia: new players ushered toward an old arena

Affiliations
Review

Long non-coding RNA and tumor hypoxia: new players ushered toward an old arena (VSports手机版)

Jing-Wen Shih et al. J Biomed Sci. .

"V体育安卓版" Abstract

Hypoxia is a classic feature of the tumor microenvironment with a profound impact on cancer progression and therapeutic response. Activation of complex hypoxia pathways orchestrated by the transcription factor HIF (hypoxia-inducible factor) contributes to aggressive phenotypes and metastasis in numerous cancers. Over the past few decades, exponentially growing research indicated the importance of the non-coding genome in hypoxic tumor regions. Recently, key roles of long non coding RNAs (lncRNAs) in hypoxia-driven cancer progression have begun to emerge VSports手机版. These hypoxia-responsive lncRNAs (HRLs) play pivotal roles in regulating hypoxic gene expression at chromatic, transcriptional, and post-transcriptional levels by acting as effectors of the indirect response to HIF or direct modulators of the HIF-transcriptional cascade. Notably, the aberrant expression of HRLs significantly correlates with poor outcomes in cancer patients, showing promise for future utility as a tumor marker or therapeutic target. Here we address the latest advances made toward understanding the functional relevance of HRLs, the involvement of these transcripts in hypoxia response and the underlying action mechanisms, highlighting their specific roles in HIF-1 signaling regulation and hypoxia-associated malignant transformation. .

Keywords: Cancer; HIF-1α; HRL; Hypoxia; Hypoxia-responsive lncRNAs; Long non-coding RNA; Metastasis; lncRNA V体育安卓版. .

PubMed Disclaimer

Conflict of interest statement

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not Applicable.

Competing interests

The authors declare that they have no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Figures

Fig. 1
Fig. 1
HIF (Hypoxia-inducible factor) activates its downstream target gene transcription in response to hypoxia. Under normoxia, (blue arrows), HIF-1α subunits are subjected to hydroxylation by PHDs (prolyl hydroxylase domain proteins) and other prolyl hydroxylases. Hydroxylated HIF-1α subunits are recognized by VHL (von Hippel–Lindau) proteins that target HIF-1α for subsequent ubiquitination and proteasomal degradation. During hypoxia (red arrows), the hydroxylation reactions are diminished, resulting in HIF-1α accumulation, dimerization with HIF-1β, binding to target genes and activation of target genes through recruitment of p300 and formation of the transcription initiation complex
Fig. 2
Fig. 2
Mechanisms of hypoxia-reponsive lncRNAs affecting HIF-1α activity. a Transcriptional activator. lncRNA ENST00000480739 suppresses HIF-1α expression by upregulating OS-9 transcription. OS-9 is a HIF-1α-binding protein that facilitates HIF-1α hydroxylation and proteasomal degradation. Another lncRNA RERT-lncRNA decreases the HIF-1α levels by upregulation of EGLN2 mRNA. EGLN2 encodes prolyl hydroxylase PHD1, which is responsible for HIF-1α hydroxylation and promoting HIF-1α degradation. b Transcriptional co-activator. LncHIFCAR acts as an oncogenic HIF-1α co-activator through direct binding to HIF-1α, thereby facilitating the recruitment of HIF-1α and p300 cofactor to the target promoters and stimulating HIF-1 target gene expression. c mRNA stability control. lncRNA-LET interacts with RNA-binding protein NF90, which has been implicated in the stabilization of target mRNAs. As the association between lncRNA-LET and NF90 could enhance the degradation of NF90, the hypoxia-induced downregulation of lncRNA-LET may thereby increase HIF-1A mRNA stability under hypoxic conditions. In addition, lncRNA HIF1A-AS2, an antisense transcripts transcribed from the 3′-UTR of the sense HIF1A mRNA negatively regulates HIF1A mRNA expression. Through base-pair binding to the HIF-1A mRNA 3′-UTR, HIF1A-AS2 could expose AU-rich elements within the HIF-1A mRNA 3′-UTR, thereby destabilizing of HIF-1A mRNA. d miRNA sponge/ceRNA. miR-145 negatively regulates expression of p70S6K1, a protein kinase responsible for promoting protein synthesis. Hypoxia-induced lincRNA-ROR could upregulate HIF-1α expression by sequestering endogenous miR-145. In addition to lincRNA-ROR, PVT1 lncRNAs upregulate HIF-1α expression by sponging miR-186. e Interaction decoy. lincRNA-p21 is capable of binding to both VHL and HIF-1α, leading to disruption of VHL/HIF-1α interaction. f LINK-A recruits and activates BRK and LRRK2 to phosphorylates HIF-1α. These phosphorylation modifications prevents HIF-1α degradation under normoxia and facilitates the interaction between HIF-1α and cofactor p300, thereby activating HIF-1 target genes. See text for detailed discussion

References

    1. Semenza GL. Oxygen homeostasis. Wiley interdisciplinary reviews. Syst Biol Med. 2010;2:336–361. - PubMed
    1. Liu Q, Liu L, Zhao Y, Zhang J, Wang D, Chen J, et al. Hypoxia induces genomic DNA demethylation through the activation of HIF-1alpha and transcriptional upregulation of MAT2A in hepatoma cells. Mol Cancer Ther. 2011;10:1113–1123. doi: 10.1158/1535-7163.MCT-10-1010. - VSports在线直播 - DOI - PubMed
    1. Jackson AL, Zhou B, Kim WY. HIF, hypoxia and the role of angiogenesis in non-small cell lung cancer. Expert Opin Ther Targets. 2010;14:1047–1057. doi: 10.1517/14728222.2010.511617. - DOI - PMC - PubMed
    1. Harrison LR, Micha D, Brandenburg M, Simpson KL, Morrow CJ, Denneny O, et al. Hypoxic human cancer cells are sensitized to BH-3 mimetic-induced apoptosis via downregulation of the Bcl-2 protein Mcl-1. J Clin Invest. 2011;121:1075–1087. doi: 10.1172/JCI43505. - DOI - PMC - PubMed
    1. Iyer NV, Kotch LE, Agani F, Leung SW, Laughner E, Wenger RH, et al. Cellular and developmental control of O2 homeostasis by hypoxia-inducible factor 1 alpha. Genes Dev. 1998;12:149–162. doi: 10.1101/gad.12.2.149. - DOI (V体育ios版) - PMC - PubMed

Publication types

V体育ios版 - Substances