<b dir="pSzzGv8g"></b> Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The . gov means it’s official. Federal government websites often end in . gov or VSports app下载. mil. Before sharing sensitive information, make sure you’re on a federal government site. .

Https

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely V体育官网. .

Review
. 2012;8(2):272-88.
doi: 10.7150/ijbs.2929. Epub 2012 Jan 21.

TGF-β and BMP signaling in osteoblast differentiation and bone formation

Affiliations
Review

TGF-β and BMP signaling in osteoblast differentiation and bone formation (VSports手机版)

Guiqian Chen et al. Int J Biol Sci. 2012.

Abstract

Transforming growth factor-beta (TGF-β)/bone morphogenic protein (BMP) signaling is involved in a vast majority of cellular processes and is fundamentally important throughout life. TGF-β/BMPs have widely recognized roles in bone formation during mammalian development and exhibit versatile regulatory functions in the body VSports手机版. Signaling transduction by TGF-β/BMPs is specifically through both canonical Smad-dependent pathways (TGF-β/BMP ligands, receptors and Smads) and non-canonical Smad-independent signaling pathway (e. g. p38 mitogen-activated protein kinase pathway, MAPK). Following TGF-β/BMP induction, both the Smad and p38 MAPK pathways converge at the Runx2 gene to control mesenchymal precursor cell differentiation. The coordinated activity of Runx2 and TGF-β/BMP-activated Smads is critical for formation of the skeleton. Recent advances in molecular and genetic studies using gene targeting in mice enable a better understanding of TGF-β/BMP signaling in bone and in the signaling networks underlying osteoblast differentiation and bone formation. This review summarizes the recent advances in our understanding of TGF-β/BMP signaling in bone from studies of genetic mouse models and human diseases caused by the disruption of TGF-β/BMP signaling. This review also highlights the different modes of cross-talk between TGF-β/BMP signaling and the signaling pathways of MAPK, Wnt, Hedgehog, Notch, and FGF in osteoblast differentiation and bone formation. .

Keywords: BMP signaling; Bone; Osteoblasts; Runx2; Smad; TGF signaling. V体育安卓版.

PubMed Disclaimer

"VSports" Conflict of interest statement

Conflict of Interests: The authors have declared that no conflict of interest exists.

Figures

Figure 1
Figure 1
TGF-β signaling and negative regulation in bone formation. Canonical Smad-dependent TGF-β signaling first binds to receptor type II (R-II) and receptor type I (R-I), and then signaling transduces to their Smads. Activated Smads form a complex with Smad4 and then translocate into the nucleus where they interact with other transcription factors to trigger target gene expression. Smad7 disrupts the activated Smad2/3 to form a complex with Smad4. The non-Smad-dependent TAK1 signaling pathway also regulates bone formation. PTH binding activates PTH1R to stimulate several downstream effectors. PTH binding also drives internalization of PTH1R-TGFβRII complex, which attenuates both TGF-β and PTH signaling on bone development. Transcriptional factor cAMP response element binding protein (CREB) mediates PTH signaling in osteoblasts. P: phosphorylation; Ub: ubiquitination.
Figure 2
Figure 2
BMP signaling and negative regulation in bone formation. Smad-dependent-BMP signaling binds to receptor type II (R-II) and receptor type I (R-I) and then the signaling transduces to their Smads. Activated Smads form a complex with Smad4 and then translocate into the nucleus where they interact with other transcription factors to trigger target gene expression. Neogenin regulates BMP receptor association and Smad1/5/8 signaling. Activated Smads regulate expression of transcriptional factors and transcriptional coactivators important in osteoblasts (Dlx5, Runx2 and Osx). Smad6 binds type I BMP receptor and prevents Smad1/5/8 to be activated. Non-Smad-dependent TAK1 signaling pathway also regulates bone formation. The interplay between BMPs and Wnt signaling affects bone formation . BMPRIA signaling upregulates Sost expression primarily through Smad-dependent signaling, while it upregulates DKK1 through Smad-dependent and non-Smad-dependent signaling. Both Sost and DKK1 inhibit canonical Wnt signaling, leading to a decrease in bone mass. P: phosphorylation; Ub: ubiquitination.

References

    1. Soltanoff CS, Yang S, Chen W, Li YP. Signaling networks that control the lineage commitment and differentiation of bone cells. Crit Rev Eukaryot Gene Expr. 2009;19:1–46. - PMC - PubMed
    1. Huang W, Yang S, Shao J, Li YP. Signaling and transcriptional regulation in osteoblast commitment and differentiation. Front Biosci. 2007;12:3068–92. - VSports注册入口 - PMC - PubMed
    1. Guo X, Wang XF. Signaling cross-talk between TGF-beta/BMP and other pathways. Cell Res. 2009;19:71–88. - PMC (VSports app下载) - PubMed
    1. Wagner DO, Sieber C, Bhushan R, Borgermann JH, Graf D, Knaus P. BMPs: from bone to body morphogenetic proteins. Sci Signal. 2010;3:mr1. - PubMed
    1. Yi JJ, Barnes AP, Hand R, Polleux F, Ehlers MD. TGF-beta signaling specifies axons during brain development. Cell. 2010;142:144–57. - PMC (VSports在线直播) - PubMed

Publication types

"V体育ios版" MeSH terms

Substances