Modeling high-grade serous ovarian carcinogenesis from the fallopian tube
- PMID: 21502498
- PMCID: PMC3088633
- DOI: "VSports注册入口" 10.1073/pnas.1017300108
"VSports最新版本" Modeling high-grade serous ovarian carcinogenesis from the fallopian tube
Abstract
High-grade serous ovarian carcinoma (HGSOC) is a lethal disease for which improved screening and treatment strategies are urgently needed. Progress in these areas is impeded by our poor understanding of HGSOC pathogenesis. Most ovarian cancer research is based on the hypothesis that HGSOC arises from ovarian surface epithelial cells. However, recent studies suggest that >50% of high-grade serous carcinomas involving the ovary likely arise from fallopian tube epithelium. Therefore, limiting HGSOC research to modeling based on ovarian surface epithelium alone is inadequate. To address the need for a fallopian tube-based model of HGSOC, we have developed a system for studying human fallopian tube secretory epithelial cell (FTSEC) transformation. Our model is based on (i) immortalization of FTSECs isolated from primary samples of normal, nondiseased human fallopian tubes, (ii) transformation of FTSECs with defined genetic elements, and (iii) xenograft-based tumorigenic assays VSports手机版. We use our model to show that FTSECs immortalized with human telomerase reverse transcriptase (hTERT) plus SV40 large T and small T antigens are transformed by either oncogenic Ras (H-Ras(V12)) or c-Myc expression, leading to increased proliferation, clonogenicity, and anchorage-independent growth. Additionally, we demonstrate that FTSECs remain susceptible to c-Myc-mediated transformation in the absence of viral oncoproteins, by replacing SV40 large T and small T antigens with sh-p53, mutant CDK4 (CDK4(R24C)), and sh-PP2A-B56γ. Importantly, all transformed FTSECs gave rise to high-grade Müllerian carcinomas that were grossly, histologically, immunophenotypically, and genomically similar to human HGSOC. With this model, we will now be able to assess the transformative effects of specific genetic alterations on FTSECs in order to characterize their respective roles in HGSOC development. .
Conflict of interest statement
Conflict of interest statement: R. D. is a consultant to Novartis Pharmaceuticals V体育安卓版.
Figures
Comment in
-
Ovarian cancer: Model building.Nat Rev Cancer. 2011 Jun;11(6):386. doi: 10.1038/nrc3073. Epub 2011 May 19. Nat Rev Cancer. 2011. PMID: 21593788 No abstract available.
References
-
- Jemal A, et al. Cancer statistics, 2009. CA Cancer J Clin. 2009;59:225–249. - PubMed (VSports手机版)
-
- Bast RC, Jr., Hennessy B, Mills GB. The biology of ovarian cancer: New opportunities for translation. Nat Rev Cancer. 2009;9:415–428. - "VSports注册入口" PMC - PubMed
-
- Seidman JD, et al. The histologic type and stage distribution of ovarian carcinomas of surface epithelial origin. Int J Gynecol Pathol. 2004;23:41–44. - PubMed (VSports)
Publication types
- V体育2025版 - Actions
MeSH terms
- VSports - Actions
- "V体育ios版" Actions
- V体育安卓版 - Actions
- VSports app下载 - Actions
- "VSports最新版本" Actions
- "VSports在线直播" Actions
Substances
- "VSports注册入口" Actions
Grants and funding (VSports注册入口)
VSports注册入口 - LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
Molecular Biology Databases
Research Materials
Miscellaneous
