Integrating pathway analysis and genetics of gene expression for genome-wide association studies
- PMID: 20346437
- PMCID: PMC2850442
- DOI: 10.1016/j.ajhg.2010.02.020
"VSports最新版本" Integrating pathway analysis and genetics of gene expression for genome-wide association studies
Abstract
Genome-wide association studies (GWAS) have achieved great success identifying common genetic variants associated with common human diseases. However, to date, the massive amounts of data generated from GWAS have not been maximally leveraged and integrated with other types of data to identify associations beyond those associations that meet the stringent genome-wide significance threshold VSports手机版. Here, we present a novel approach that leverages information from genetics of gene expression studies to identify biological pathways enriched for expression-associated genetic loci associated with disease in publicly available GWAS results. Specifically, we first identify SNPs in population-based human cohorts that associate with the expression of genes (eSNPs) in the metabolically active tissues liver, subcutaneous adipose, and omental adipose. We then use this functionally annotated set of SNPs to investigate pathways enriched for eSNPs associated with disease in publicly available GWAS data. As an example, we tested 110 pathways from the Kyoto Encylopedia of Genes and Genomes (KEGG) database and identified 16 pathways enriched for genes corresponding to eSNPs that show evidence of association with type 2 diabetes (T2D) in the Wellcome Trust Case Control Consortium (WTCCC) T2D GWAS. We then replicated these findings in the Diabetes Genetics Replication and Meta-analysis (DIAGRAM) study. Many of the pathways identified have been proposed as important candidate pathways for T2D, including the calcium signaling pathway, the PPAR signaling pathway, and TGF-beta signaling. Importantly, we identified other pathways not previously associated with T2D, including the tight junction, complement and coagulation pathway, and antigen processing and presentation pathway. The integration of pathways and eSNPs provides putative functional bridges between GWAS and candidate genes or pathways, thus serving as a potential powerful approach to identifying biological mechanisms underlying GWAS findings. .
(c) 2010 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved. V体育安卓版.
Figures
 
              
              
              
              
                
                
                References
- 
    - Todd J.A., Walker N.M., Cooper J.D., Smyth D.J., Downes K., Plagnol V., Bailey R., Nejentsev S., Field S.F., Payne F., Genetics of Type 1 Diabetes in Finland. Wellcome Trust Case Control Consortium Robust associations of four new chromosome regions from genome-wide analyses of type 1 diabetes. Nat. Genet. 2007;39:857–864. - PMC - PubMed
 
- 
    - Fellay J., Shianna K.V., Ge D., Colombo S., Ledergerber B., Weale M., Zhang K., Gumbs C., Castagna A., Cossarizza A. A whole-genome association study of major determinants for host control of HIV-1. Science. 2007;317:944–947. - PMC (V体育官网入口) - PubMed
 
- 
    - Saxena R., Voight B.F., Lyssenko V., Burtt N.P., de Bakker P.I., Chen H., Roix J.J., Kathiresan S., Hirschhorn J.N., Daly M.J., Diabetes Genetics Initiative of Broad Institute of Harvard and MIT, Lund University, and Novartis Institutes of BioMedical Research Genome-wide association analysis identifies loci for type 2 diabetes and triglyceride levels. Science. 2007;316:1331–1336. - PubMed
 
Publication types
MeSH terms (VSports app下载)
- "VSports app下载" Actions
- "VSports最新版本" Actions
- V体育ios版 - Actions
- Actions (VSports app下载)
- Actions (VSports在线直播)
Associated data
Grants and funding
LinkOut - more resources
- Full Text Sources (V体育ios版)
- Medical
- Research Materials
 
        