Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The . gov means it’s official. Federal government websites often end in . gov or . mil VSports app下载. Before sharing sensitive information, make sure you’re on a federal government site. .

Https

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely. V体育官网.

Meta-Analysis
. 2008;10(4):R65.
doi: 10.1186/bcr2124. Epub 2008 Jul 28.

Meta-analysis of gene expression profiles in breast cancer: toward a unified understanding of breast cancer subtyping and prognosis signatures

Affiliations
Meta-Analysis

Meta-analysis of gene expression profiles in breast cancer: toward a unified understanding of breast cancer subtyping and prognosis signatures (VSports)

Pratyaksha Wirapati et al. Breast Cancer Res. 2008.

Abstract

Introduction: Breast cancer subtyping and prognosis have been studied extensively by gene expression profiling, resulting in disparate signatures with little overlap in their constituent genes. Although a previous study demonstrated a prognostic concordance among gene expression signatures, it was limited to only one dataset and did not fully elucidate how the different genes were related to one another nor did it examine the contribution of well-known biological processes of breast cancer tumorigenesis to their prognostic performance. VSports手机版.

Method: To address the above issues and to further validate these initial findings, we performed the largest meta-analysis of publicly available breast cancer gene expression and clinical data, which are comprised of 2,833 breast tumors V体育安卓版. Gene coexpression modules of three key biological processes in breast cancer (namely, proliferation, estrogen receptor [ER], and HER2 signaling) were used to dissect the role of constituent genes of nine prognostic signatures. .

Results: Using a meta-analytical approach, we consolidated the signatures associated with ER signaling, ERBB2 amplification, and proliferation. Previously published expression-based nomenclature of breast cancer 'intrinsic' subtypes can be mapped to the three modules, namely, the ER-/HER2- (basal-like), the HER2+ (HER2-like), and the low- and high-proliferation ER+/HER2- subtypes (luminal A and B). We showed that all nine prognostic signatures exhibited a similar prognostic performance in the entire dataset. Their prognostic abilities are due mostly to the detection of proliferation activity. Although ER- status (basal-like) and ERBB2+ expression status correspond to bad outcome, they seem to act through elevated expression of proliferation genes and thus contain only indirect information about prognosis. Clinical variables measuring the extent of tumor progression, such as tumor size and nodal status, still add independent prognostic information to proliferation genes. V体育ios版.

Conclusion: This meta-analysis unifies various results of previous gene expression studies in breast cancer. It reveals connections between traditional prognostic factors, expression-based subtyping, and prognostic signatures, highlighting the important role of proliferation in breast cancer prognosis. VSports最新版本.

PubMed Disclaimer

"VSports app下载" Figures

Figure 1
Figure 1
Breast tumor characterization using module scores. (a) Joint distribution between the estrogen and ERBB2 amplification scores in example datasets. Clusters are identified by Gaussian mixture models with three components. The ellipses correspond to the 95% cumulative probability around the cluster centers. The clusters are designated as tumor types ER-/ERBB2-, HER2+, and ER+/HER2-. HER2+ tumors show intermediate estrogen scores. (b) Dot histograms showing dependence of proliferation score on the subtypes. The median and quartiles for each group are shown by the box plot. ER-/ERBB2- and HER2+ tumors show high proliferation scores, whereas ER+/HER2- tumors show a wide range of proliferation scores. The distributions of the intrinsic subtypes (colored dots), BRCA1 mutations, and p53 mutations are shown in datasets where they are available. ER, estrogen receptor.
Figure 2
Figure 2
Survival analysis of groups based on module scores. Kaplan-Meier analysis for distant relapse-free survival (DRFS) of systemically untreated (a) and treated (b) patient groups. The ER+ subgroup is split into ER+/HER2-/L and ER+/HER2-/H (low and high proliferation, respectively). Vertical bars on the curves are 95% confidence intervals for the Kaplan-Meier survival estimates. Forest plot representation of the 5-year survival estimates and hazard ratios for DRFS of individual datasets in the systemically untreated (c) and treated (d) populations. The length of horizontal bars and the width of the diamonds of the 'Total' correspond to 95% confidence intervals. Missing bars are unavailable data. Multivariate analysis representation in which all the variables are available in systemically untreated (e) and treated (f) patients. ER, estrogen receptor; HR, hazard ratio.
Figure 3
Figure 3
Signature comparison. The prognostic performance of the signatures is compared by the forest plots of hazard ratio and plotted as vertical color bars for comparison. Most signatures show similar performance. Prognostic performance for distant relapse-free survival (DRFS) of the signatures using partial signatures containing only proliferation genes in the untreated (a) and treated (c) populations. The performance of most signatures is not degraded; in fact, it is improved for p53-32. Prognostic performance for DRFS of the signatures using partial signatures containing nonproliferation genes in the untreated (b) and treated (d) populations.
Figure 4
Figure 4
Patient classifications made by example signatures applied to representative datasets, showing that the different signatures are essentially detecting as low-risk the low-proliferation subset of ER+/ERBB2- tumors. ER, estrogen receptor.

References

    1. Bild AH, Yao G, Chang JT, Wang Q, Potti A, Chasse D, Joshi MB, Harpole D, Lancaster JM, Berchuck A, Olson JA, Jr, Marks JR, Dressman HK, West M, Nevins JR. Oncogenic pathway signatures in human cancers as a guide to targeted therapies. Nature. 2006;439:353–357. doi: 10.1038/nature04296. - V体育官网入口 - DOI - PubMed
    1. Buyse M, Loi S, van't Veer L, Viale G, Delorenzi M, Glas AM, d'Assignies MS, Bergh J, Lidereau R, Ellis P, Harris A, Bogaerts J, Therasse P, Floore A, Amakrane M, Piette F, Rutgers E, Sotiriou C, Cardoso F, Piccart MJ, TRANSBIG Consortium Validation and clinical utility of a 70-gene prognostic signature for women with node-negative breast cancer. J Natl Cancer Inst. 2006;98:1183–1192. - PubMed
    1. Calza S, Hall P, Auer G, Bjohle J, Klaar S, Kronenwett U, Liu ET, Miller L, Ploner A, Smeds J, Bergh J, Pawitan Y. Intrinsic molecular signature of breast cancer in a population-based cohort of 412 patients. Breast Cancer Res. 2006;8:R34. doi: 10.1186/bcr1517. - DOI - PMC - PubMed
    1. Espinosa E, Vara JA, Redondo A, Sanchez JJ, Hardisson D, Zamora P, Pastrana FG, Cejas P, Martinez B, Suarez A, Calero F, Barón MG. Breast cancer prognosis determined by gene expression profiling: a quantitative reverse transcriptase polymerase chain reaction study. J Clin Oncol. 2005;23:7278–7285. doi: 10.1200/JCO.2005.01.4746. - VSports最新版本 - DOI - PubMed
    1. Farmer P, Bonnefoi H, Becette V, Tubiana-Hulin M, Fumoleau P, Larsimont D, Macgrogan G, Bergh J, Cameron D, Goldstein D, Duss S, Nicoulaz AL, Brisken C, Fiche M, Delorenzi M, Iggo R. Identification of molecular apocrine breast tumours by microarray analysis. Oncogene. 2005;24:4660–4671. doi: 10.1038/sj.onc.1208561. - DOI - PubMed

Publication types (VSports最新版本)