VSports app下载 - Abstract
Defects in genes encoding ribosomal proteins cause Diamond Blackfan Anemia (DBA), a red cell aplasia often associated with physical abnormalities. Other bone marrow failure syndromes have been attributed to defects in ribosomal components but the link between erythropoiesis and the ribosome remains to be fully defined VSports注册入口. Several lines of evidence suggest that defects in ribosome synthesis lead to “ribosomal stress” with p53 activation and either cell cycle arrest or induction of apoptosis. Pathways independent of p53 have also been proposed to play a role in DBA pathogenesis.
We took an unbiased approach to identify p53-independent pathways activated by defects in ribosome synthesis by analyzing global gene expression in various cellular models of DBA. Ranking-Principal Component Analysis (Ranking-PCA) was applied to the identified datasets to determine whether there are common sets of genes whose expression is altered in these different cellular models V体育官网入口. We observed consistent changes in the expression of genes involved in cellular amino acid metabolic process, negative regulation of cell proliferation and cell redox homeostasis.
These data indicate that cells respond to defects in ribosome synthesis by changing the level of expression of a limited subset of genes involved in critical cellular processes. Moreover, our data support a role for p53-independent pathways in the pathophysiology of DBA VSports在线直播.
Abbreviations: DBA, Diamond Blackfan anemia; RP, ribosomal protein; RS, ribosomal stress; PCA, principal component analysis; PC, principal component; GO, gene ontology
Keywords: Ribosomal protein, Diamond Blackfan Anemia, Ribosomopathy, Bone marrow failure
"V体育官网入口" Highlights
- 
•Ribosomopathies such as DBA are caused by ribosome dysfunction that activates p53. 
- 
•p53-independent pathways may suggest possible treatments for DBA. 
- 
•Expression analysis was performed in three p53-null models of DBA. 
- 
•Genes involved in apoptosis and cell redox homeostasis were especially affected. 
- 
•DBA is due to cumulative effects of p53-dependent and independent pathways. 
1. Introduction
Mutations in genes encoding ribosomal proteins result in Diamond Blackfan Anemia (DBA), a bone marrow failure syndrome characterized by pure erythroid aplasia (Draptchinskaia et al. , 1999; Vlachos et al. , 2008). In addition to bone marrow failure, malformations are observed in approximately one third of the patients. DBA is inherited with an autosomal dominant pattern and results from haploinsufficiency for single ribosomal proteins (RPs). To date eleven genes encoding ribosomal proteins have been found mutated in DBA patients, i. e. RPS19, RPS24, RPS17, RPL5, RPL11, RPS7, RPL35A, RPS26, RPS10, RPL26, and RPL15 (Boria et al. , 2010; Draptchinskaia et al VSports最新版本. , 1999; Gazda et al. , 2012; Landowski et al. , 2013; Quarello et al. , 2010).
In addition to DBA several other ribosomopathies have been described (Narla and Ebert, 2010). Many of these are bone marrow failure syndromes but other ribosomopathies where hematopoiesis is unaffected have also been identified (Freed et al. , 2010). The DBA phenotype has been ascribed to a peculiar sensitivity of the erythron and tissues of the developing embryo to haploinsufficiency for ribosomal proteins. This hypothesis is based on information obtained using both cellular models and model organisms. Deficiencies in factors involved in ribosome synthesis have been studied extensively in Drosophila, Xenopus, zebrafish and mouse (Danilova et al. , 2008; Kongsuwan et al. , 1985; McGowan et al. , 2008; Miller and Gurdon, 1970). These defects cause the induction of a cellular stress response, called ribosomal (or nucleolar) stress (RS) that results in activation of p53-dependent and independent pathways, which block proliferation and/or induce apoptosis (Dutt et al. , 2011; Moniz et al. , 2012; Torihara et al. , 2011). Whereas pharmacological or genetic inhibition of p53 is able to attenuate phenotypes in many of these models, treatment based on p53 inhibition appears unrealistic in humans because of attendant cancer risks V体育平台登录.
To shed light into pathways that are activated by ribosomal stress in human cells expressing reduced levels of ribosomal proteins we have studied the transcriptome of three different cellular models of DBA looking for intersecting patterns of gene expression changes.
2. Design and methods
2.1. Cell cultures
Human erythroleukemia cell line TF1 (ATCC Number: CRL-2003) was grown in RPMI 1640 medium supplemented with 10% FBS, 2 mM l-glutamine, 100 UI/mL penicillin, 100 μg/mL streptomycin and 5 ng/mL GM-CSF V体育官网入口. TF1 cells expressing inducible shRNAs against RPS19 or a scrambled shRNA were provided by Dr. Stefan Karlsson (Miyake et al. , 2005) (shRNAs SCR, B and C). shRNA expression was induced by 0. 5 μg/mL doxycycline (DOX) for four days. TF1 cells for transduction were thawed and maintained for minimum two passages before being transduced with lentivirus prrl-shSCR or prrl-shRPL5A or prrl-shRPL11A (Moniz et al. , 2012) with an MOI of 10. Two days after transduction, Green Fluorescent Protein (GFP) positive cells were sorted by flow cytometry and cultured under the same conditions for four days.
For qRT-PCR validation and flow cytometric analysis we also designed and produced a third generation lentiviral vector (LV) system expressing scrambled or RPS19 shRNA both of them co-expressing GFP under the control of the human PGK promoter (Miyake et al., 2005) (shRNAs SCR and C). LVs were obtained after transient transfection of 293T cells by the calcium phosphate method (Taulli et al., 2005) with the packaging plasmids (pMDLg/pRRE, pRSV-REV and pMD2-VSVG) and the transfer vectors expressing either the scrambled or the RPS19 shRNA. TF1 cells were transduced with MOI 10 the described LVs (Follenzi et al., 2000). Transduction efficiency was evaluated after three days by GFP detection. Cells were collected for analysis four days after transduction.
2.2. TP53 analysis
Genomic DNA was isolated from TF1 cells using a QIAamp DNA Mini kit (Qiagen) according to the manufacturer's protocol. Primers were designed to amplify exons 4–9 and their flanking regions. PCR was performed using AmpliTaq Gold DNA Polymerase (Applied Biosystems) and amplicons were sequenced in both directions using a Big Dye Terminator® v1.1 cycle sequencing kit (Applied Biosystem) and an ABI PRISM® 3100 genetic analyzer. Total RNA was isolated from TF1 cells using a RNeasy Plus Mini kit (Qiagen) and reverse transcribed with a High Capacity cDNA Reverse Transcription kit (Applied Biosystems). TP53 was amplified from cDNA and sequenced. Sequencing of TP53 from primary CD34+ cells was performed in parallel as a wild type control.
For the nuclear localization assay TF1 cells were lysed as previously described (Andrews and Faller, 1991) and subjected to western blot analysis.
2.3. Western blot
Cells were lysed in Lysis Buffer (50 mM Tris–HCl pH 8, 1 mM EDTA, 150 mM NaCl, 0.5% NP-40) supplemented with protease inhibitors. Cell debris was removed by centrifugation at 13,000 g for 10 min and the supernatant was collected. Proteins were separated on 12% SDS–PAGE, transferred on nitrocellulose membrane and incubated with antibodies specific for RPS19 (Abnova), RPL5 (Abcam), RPL11 (Invitrogen), β-actin (Sigma), p53, nucleolin and GAPDH (Santa Cruz Biotechnology). Detection of immunoblots was carried out with Western Lightning® Plus-ECL (PerkinElmer). Downregulation or overexpression of the proteins of interest was estimated after normalization to the intensity of GAPDH or β-actin.
2.4. Flow cytometry
Analysis of maturation markers was performed on TF1 cells four days after transduction with SCR or RPS19 shRNAs. 5 × 104 cells were incubated for 15 min with PE-conjugated antibodies specific for CD117 (c-KIT), CD34, CD71 and CD235a (glycophorin A). Cells were then washed with PBS and examined using a flow cytometer (FACSCalibur, Becton-Dickinson). Cell cycle analysis was performed using propidium iodide (PI) staining. Briefly, cells were fixed, treated with RNase A and stained with PI 40 μg/mL, then subjected to flow cytometry analysis.
2.5. RNA isolation and microarray processing
Total RNA for microarray analysis was isolated using either a TRIzol® reagent (Invitrogen) or a RNeasy Plus Mini kit (Qiagen) according to the protocols supplied by the manufacturers. RNA quantification, quality assessment and labeling were performed as described in Avondo et al. (2009). Labeled cRNA was hybridized on Affymetrix GeneChip Human Genome U133A 2.0 Arrays. Microarray processing and data analysis were performed as described by Avondo et al. (2009).
2.6. Ranking-Principal Component Analysis (Ranking-PCA)
PCA (Massart et al., 1988, 1998) is a multivariate pattern recognition method that allows the representation of the original dataset in a new reference system characterized by new variables called principal components (PCs). By the use of a restricted number of significant PCs, experimental noise and random variations can be eliminated. PCA is exploited in Ranking-PCA (Marengo et al., 2010; Polati et al., 2012; Robotti et al., 2011) to select the most discriminating variables (i.e. candidate biomarkers) between two groups of samples (e.g. control vs. pathological) and sort them according to their decreasing discrimination ability. Here, Ranking-PCA was applied by calculating PCs in leave-one-out (LOO) cross-validation. The analysis we performed aimed to identify the transcriptome abnormalities found in human TF1 cells with a defect of RPS19, RPL5 or RPL11.
The dataset consisted of measurements from two sets of experiments:
- 
-TF1 cell lines with downregulation of RPS19 (labeled S19 in Fig. 1) and their SCR controls (labeled CS); 
- 
-TF1 cell lines downregulated for RPL5 and RPL11 (labeled L5 and L11 respectively) and their scrambled controls (labeled CL). 
Fig. 1.
p53 in TF1 cells.
A. TF1 cells do not present the wild type form of p53. Sequencing of genomic DNA showed two mutations in trans: one leads to the skipping of exon 7 and nonsense mediated mRNA decay (NMD), the other induces frameshift without NMD and was also detected by cDNA sequencing, as shown in the electropherogram. The aberrant transcript gives rise to a mutant protein that carries 93 incorrect amino acids at the C-terminus.
Electropherogram of p53 from CD34+ primary cells and a schematic representation of p53 protein domains are shown as a wild type control.
B. Immunoblotting performed with an antibody against the N-terminal region of p53 reveals a smaller protein in TF1 cells than the full-length p53 expressed by CD34+ cells.
Since the datasets were not directly comparable, they were independently mean centered (i.e. the average value of each variable is subtracted from each sample for each dataset separately). Then, Ranking-PCA was applied to the TF1 dataset consisting in 17 samples (7 control and 10 pathological) described by 10,194 variables (probes). Only the first PC was selected and provided the correct classification of all the samples, as assessed by calculation of the percent non-error-rate (NER%), defined as the percentage of correct assignments (NER% = 100%).
The performance of Ranking-PCA was compared to other classification tools as Partial Least Squares-Discriminant Analysis (PLS-DA) (Marengo et al., 2008) obtaining similar classification performances but Ranking-PCA provides an exhaustive set of candidate biomarkers ranked according to their decreasing discriminant ability.
2.7. Quantitative RT-PCR
For qRT-PCR analysis total RNA was isolated using TRIzol® reagent. cDNA was synthesized using the High Capacity cDNA Reverse Transcription Kit (Applied Biosystems). Quantitative PCR was performed with an Abi Prism 7000 instrument (Applied Biosystems) using Taqman® Gene Expression Assays (Applied Biosystems). PCR reactions were run in triplicate. Ct values were normalized to GAPDH or β-actin, used as endogenous controls, and expression levels were calculated with the ddCt method (Livak and Schmittgen, 2001). Fold changes in the expression of the target gene were equivalent to 2− ddCt. Fold change data are presented as mean ± SD. Data were analyzed with Student's t-test.
3. Results
3.1. Characterization of TF1 cell lines
RPS19-silenced TF1 cells have been widely employed to investigate DBA pathophysiology (Badhai et al., 2009; Flygare et al., 2007; Miyake et al., 2005, 2008). Using this cell model it was demonstrated for the first time that human RPS19 is required for the maturation of 40S ribosomal subunits (Flygare et al., 2007). When RPS19-deficient TF1 cells were treated with erythropoietin (EPO), significant suppression of erythroid differentiation, cell growth, and colony formation was observed (Miyake et al., 2005), along with the increase of apoptotic cells (Miyake et al., 2008). These previous studies did not ascertain the status of p53, whereas more recent investigations have pointed out that ribosomal stress activates both p53 dependent and independent pathways. To address this issue we sequenced the TP53 gene in both parental and RPS19 downregulated TF1 cell lines (Miyake et al., 2005). Sequencing of genomic DNA showed two mutations in trans. On one allele, mutation c.673-2A>G in the acceptor splice site of exon 7 is expected to lead to the skipping of this exon and to nonsense mediated mRNA decay (NMD, Fig. 1A), as confirmed by the absence of this transcript in cDNA sequencing analysis (data not shown).
On the other allele, we detected mutation c.752delT, already described by Urashima et al. (1998). We found that this mutation induces frameshift without NMD, since the stop codon of the new reading frame is located in proximity of the last splicing site. This mutation was also detected in p53 mRNA expressed by TF1 cells, as shown by cDNA sequencing (Fig. 1A). The aberrant transcript gives rise to a protein with 93 incorrect amino acids at the C-terminus and with a predicted size of approximately 38 kDa (Fig. 1A). Accordingly, immunoblotting performed with an antibody against the N-terminal region of p53 revealed a smaller protein in TF1 cells than the full-length p53 expressed by CD34+ cells (Fig. 1B). This protein lacks the nuclear localization signal and part of the DNA binding domain, therefore it accumulates in the cytoplasm (Fig. S1) and is presumably inactive. The presence of null mutations on both alleles of p53 makes TF1 cells a suitable model for the investigation of p53-independent pathways activated by ribosomal stress.
3.2. Phenotypic characterization of RPS19 downregulated cells
We then investigated how RPS19 downregulation affected proliferation, apoptosis and maturation in TF1 cells cultured without EPO. Cells expressing shRNA against RPS19 were examined after four days of DOX treatment and compared to a scrambled (SCR) control. The level of RPS19 protein was reduced to about 50% (Fig. 2A), thus mimicking RP haploinsufficiency showed by DBA patients, who always carry the deleterious mutation in heterozygosity. We observed a slight, not significant decrease in proliferation (Fig. 2B).
Fig. 2.
RPS19 silencing in TF1 cells.
A. Western blot showing the downregulation of RPS19 protein in TF1 cells, compared to scrambled controls, after four days of DOX treatment. The densitometry analysis, performed on three replicates, shows a statistically significant downregulation of RPS19. *p value < 0.05.
B. Growth curve of TF1 cells treated with DOX for four days.
C. Cell cycle analysis by flow cytometry of TF1 cells treated with DOX for four days and stained with propidium iodide. The bar graphs show the percentage of cells in subG1 phase on total cells and the percentage of cells in G0/G1 and G2/M phase on viable cells, as the mean of three replicates. Standard deviation bars are shown. *p value < 0.05.
Propidium iodide staining revealed a significant increase in the subG1 population which includes late-stage apoptotic and necrotic cells. Among viable cells, a large proportion of RPS19 silenced cells were in G0/G1 phase, whereas the percentage of cells in G2/M phase decreased about 1.7 fold compared to SCR control (Fig. 2C).
We then characterized the phenotypic expression of surface markers by flow cytometry. TF1 cells were transduced with a lentivirus expressing SCR or RPS19 shRNAs and GFP as a reporter gene. The transduction efficiency was higher than 97% (Fig. S2A). In this model, constitutively expressing shRNAs, RPS19 downregulation, as well as its effects on proliferation and cell cycle, was very similar to the DOX-inducible model (data not shown). The proportion of cells positive for two early hematopoietic markers, c-KIT and CD34, and for two markers specific for erythroid differentiation, CD71 and glycophorin A, was unchanged (Fig. S2B).
3.3. Gene expression profiling of cells with RP deficiency (VSports)
To identify p53-independent pathways activated by a RP defect, we used three TF1 cell lines expressing shRNAs against RPS19, RPL5 or RPL11, the three most frequently mutated DBA genes. The downregulation of the respective ribosomal proteins was assessed by western blotting (Figs. 2A, S3). The observed downregulation of RPL5 was about 40% and that of RPL11 was about 70%, as compared with scrambled controls.
We analyzed whole genome expression profiles of the three TF1 cell lines downregulated for RPS19, RPL5 or RPL11 (named hereafter TF1 shRPS19, TF1 shRPL5, TF1 shRPL11) as compared to SCR controls. The expression study was performed using Affymetrix GeneChip Human Genome U133A 2.0 Arrays which allow the screening of 18,400 transcripts. Each dataset showed a decrease in the transcript corresponding to the downregulated RP (fold change RPS19: 0.12; RPL5: 0.26; RPL11: 0.11).
In order to identify the transcriptional signature of RP deficiency in p53-deficient cells we intersected the three TF1 cell lines downregulated for RPS19, RPL5 and RPL11 using Ranking-PCA. Ranking-PCA is a statistical method that can select and sort the most discriminating variables between groups of pathological and control samples (Robotti et al., 2011). Fig. 3 represents the results of PCA performed on the first 205 variables selected by Ranking-PCA. The first PC accounts for about 79% of the overall information. The selected variables are reported in Table S1 according to the order in which they were included in the Ranking-PCA model. It is important to note that the results obtained by Ranking-PCA do not necessarily include all the genes that have the highest fold change in RP-deficient cells as compared to their controls. Instead the analysis is carried out to provide the set of dysregulated genes common to the three TF1 cell lines silenced for RPS19, RPL5 or RPL11: a gene is added only if it shows a similar dysregulation in all datasets. Although PC2 is responsible for only about 4% of the total information, it does reflect effects of the pathology since control and pathological samples from the same cell line (TF1-S and TF1-L cell lines) lie at opposite values along this PC. PC1 and PC2 together are able to clearly distinguish the four groups of samples corresponding to two different downregulation models (TF1-S is an inducible model, whereas L is a constitutive downregulation model), both control and pathological, and to RPs pertaining to different ribosome subunits.
Fig. 3.

PCA on RP deficient TF1 cells.
Score plot of the first two PCs calculated on the dataset containing TF1 cell lines downregulated for RPS19, RPL5 and RPL11. Samples are separated along PC1 in controls (positive scores; empty circles) and pathological (negative scores; full circles).
Labels: S19 = TF1 downregulated for RPS19; CS = scrambled controls for RPS19; L5 and L11 = TF1 downregulated for RPL5 and RPL11; CL = scrambled controls for RPL5 and RPL11.
3.4. Biological processes altered in cells with RP deficiency
In order to systematically detect impaired biological processes of these cells, we analyzed the genes included in the Ranking-PCA list by employing the tool of gene annotation provided by DAVID (Database for Annotation, Visualization and Integrated Discovery) at http://david.abcc.ncifcrf.gov/. The results included classifications according to Gene Ontology (GO) and PANTHER databases. GO categories for Biological Processes showed an enrichment, among others, of genes involved in cellular amino acid metabolic process, negative regulation of cell proliferation, apoptosis and cell redox homeostasis (Table 1). The PANTHER Biological Process annotation identified statistically significant over-representation of genes involved in hematopoiesis and in amino acid and steroid metabolism (Table 2).
Table 1.
Genes included in the PC1 were annotated using Gene Ontology biological process.
| Term | Count | p value | Genes | 
|---|---|---|---|
| GO:0008610 — lipid biosynthetic process | 19 | 4.12E − 08 | FCER1A, EBP, SPTLC2, SCD, HMGCS1, FDXR, LTC4S, SC4MOL, FDFT1, FAR2, PIGK, PIGF, LPCAT1, SH3GLB1, DHCR7, PBX1, LTA4H, SC5DL, NSDHL | 
| GO:0016053 — organic acid biosynthetic process | 12 | 1.99E − 06 | FCER1A, C8ORF62, SCD, ASNS, LTC4S, SC4MOL, CTH, GOT1, SH3GLB1, PHGDH, LTA4H, PSAT1, SC5DL | 
| GO:0016126 — sterol biosynthetic process | 7 | 2.84E − 06 | EBP, DHCR7, HMGCS1, SC5DL, FDFT1, SC4MOL, NSDHL | 
| GO:0006694 — steroid biosynthetic process | 9 | 6.53E − 06 | EBP, DHCR7, HMGCS1, FDXR, PBX1, SC5DL, FDFT1, SC4MOL, NSDHL | 
| GO:0043436 — oxoacid metabolic process | 21 | 7.41E − 06 | FCER1A, C8ORF62, SCD, CS, GARS, EPRS, ASNS, LTC4S, PCK2, SLC7A5, SC4MOL, MTHFD2, CTH, GOT1, SH3GLB1, GFPT1, PHGDH, LTA4H, DDAH2, PSAT1, SC5DL, ALDH9A1 | 
| GO:0044106 — cellular amine metabolic process | 14 | 5.98E − 05 | C8ORF62, GARS, EPRS, ASNS, SLC7A5, CTH, GOT1, GFPT1, PHGDH, SMOX, PAFAH1B1, AMD1, PSAT1, DDAH2, ALDH9A1 | 
| GO:0044255 — cellular lipid metabolic process | 16 | 0.0013 | FCER1A, SPTLC2, SCD, HMGCS1, PIP5K1B, LTC4S, SC4MOL, FDFT1, PIGK, PIGF, LPCAT1, SH3GLB1, LTA4H, PAFAH1B1, SC5DL, NR1H3 | 
| GO:0006520 — cellular amino acid metabolic process | 10 | 0.0014 | C8ORF62, CTH, GOT1, GFPT1, GARS, PHGDH, EPRS, ASNS, PSAT1, DDAH2, SLC7A5 | 
| GO:0006633 — fatty acid biosynthetic process | 6 | 0.0023 | FCER1A, SCD, LTA4H, LTC4S, SC5DL, SC4MOL | 
| GO:0009309 — amine biosynthetic process | 6 | 0.0026 | C8ORF62, CTH, GOT1, PHGDH, ASNS, PSAT1, AMD1 | 
| GO:0008202 — steroid metabolic process | 9 | 0.0026 | EBP, DHCR7, HMGCS1, FDXR, PBX1, SC5DL, FDFT1, SC4MOL, NSDHL | 
| GO:0006575 — cellular amino acid derivative metabolic process | 8 | 0.0034 | CTH, PHGDH, PAFAH1B1, SMOX, AMD1, ALDH9A1, SOD2, GLRX2 | 
| GO:0008203 — cholesterol metabolic process | 6 | 0.0044 | EBP, DHCR7, HMGCS1, FDXR, FDFT1, NSDHL | 
| GO:0010243 — response to organic nitrogen | 5 | 0.0063 | ALDOC, HMGCS1, ASNS, PPP3CA, DDIT3 | 
| GO:0019725 — cellular homeostasis | 13 | 0.0086 | CLNS1A, FTH1, DDIT3, SOD2, GLRX2, LOC100130902, TFRC, FTHL3, FTHL16, EPOR, TXNRD1, PPP3CA, SH3BGRL3, SLC39A4, EIF2B4, FTHL20, ADD1 | 
| GO:0008285 — negative regulation of cell proliferation | 11 | 0.0099 | CEBPA, LST1, FTH1, SOD2, MAGED1, CTH, CDKN2A, FTHL3, BTG3, MYO16, FTHL16, ASPH, EMP3, FTHL20 | 
| GO:0006915 — apoptosis | 15 | 0.0109 | DPF2, ALDOC, LGALS1, SOD2, TRADD, GLRX2, MAGED1, CDKN2A, SHARPIN, SH3GLB1, BRE, PYCARD, AVEN, APAF1, TRAF3 | 
| GO:0006259 — DNA metabolic process | 13 | 0.0156 | GLRX2, MCM6, SOD2, TFAM, CDKN2A, CSNK1D, RRM1, MUS81, BRE, APAF1, OGG1, TRIP13, RBMS1 | 
| GO:0043450 — alkene biosynthetic process | 3 | 0.0204 | FCER1A, LTA4H, LTC4S | 
| GO:0006644 — phospholipid metabolic process | 7 | 0.0241 | PIGK, PIGF, LPCAT1, SH3GLB1, PIP5K1B, PAFAH1B1, FDFT1 | 
| GO:0006691 — leukotriene metabolic process | 3 | 0.0269 | FCER1A, LTA4H, LTC4S | 
| GO:0006732 — coenzyme metabolic process | 6 | 0.0338 | MTHFD2, CTH, PANK3, CS, SOD2, GLRX2 | 
| GO:0021570 — rhombomere 4 development | 2 | 0.0347 | HOXA1, HOXB2 | 
| GO:0006461 — protein complex assembly | 12 | 0.0348 | TFAM, CTH, TSPAN4, ALDOC, IRF7, RRM1, EPRS, TUBA4A, HSPA4, WIPF1, SURF1, SOD2 | 
| GO:0030262 — apoptotic nuclear changes | 3 | 0.0367 | CDKN2A, SHARPIN, APAF1 | 
| GO:0044271 — nitrogen compound biosynthetic process | 9 | 0.0371 | CEBPA, C8ORF62, CTH, GOT1, RRM1, PHGDH, ASNS, PSAT1, DDAH2, AMD1 | 
| GO:0045454 — cell redox homeostasis | 4 | 0.0374 | LOC100130902, TXNRD1, SH3BGRL3, DDIT3, GLRX2 | 
| GO:0046486 — glycerolipid metabolic process | 6 | 0.0416 | PIGK, PIGF, SH3GLB1, PIP5K1B, PAFAH1B1, NR1H3 | 
| GO:0006749 — glutathione metabolic process | 3 | 0.0421 | CTH, SOD2, GLRX2 | 
| GO:0021610 — facial nerve morphogenesis | 2 | 0.0460 | HOXA1, HOXB2 | 
| GO:0021569 — rhombomere 3 development | 2 | 0.0460 | HOXA1, HOXB2 | 
| GO:0021604 — cranial nerve structural organization | 2 | 0.0460 | HOXA1, HOXB2 | 
| GO:0021612 — facial nerve structural organization | 2 | 0.0460 | HOXA1, HOXB2 | 
| GO:0009888 — tissue development | 14 | 0.0479 | S100A4, TRIM15, LOC100130902, CDKN2A, HOXB2, SHARPIN, GFPT1, SEMA3C, EPOR, TXNRD1, PBX1, APAF1, CA2, PPP3CA, NSDHL | 
| GO:0006650 — glycerophospholipid metabolic process | 5 | 0.0496 | PIGK, PIGF, SH3GLB1, PIP5K1B, PAFAH1B1 | 
Table 2.
Genes included in the PC1 were annotated using Panther.
| Term | Count | p value | Genes | 
|---|---|---|---|
| BP00297: other steroid metabolism | 3 | 0.0048 | SC5DL, FDFT1, SC4MOL | 
| BP00026: cholesterol metabolism | 5 | 0.0054 | EBP, HMGCS1, FDFT1, SC4MOL, NSDHL | 
| BP00284: hematopoiesis | 5 | 0.0063 | CEBPA, STAP1, EPOR, PBX1, TRIM15 | 
| BP00013: amino acid metabolism | 8 | 0.0085 | C8ORF62, CTH, GOT1, SLC7A1, CS, PHGDH, ASNS, PSAT1, SLC7A5 | 
| BP00014: amino acid biosynthesis | 4 | 0.0122 | C8ORF62, CS, PHGDH, ASNS, PSAT1 | 
| BP00295: steroid metabolism | 6 | 0.0314 | EBP, HMGCS1, SC5DL, FDFT1, SC4MOL, NSDHL | 
Two genes stood out whose expression was increased in this analysis, EPOR and TFRC, whereas another noteworthy gene, SOD2, displayed reduced expression (Table S1).
Among the differentially expressed genes, there were only four genes whose transcription could be activated by p53 (Riley et al., 2008): APAF1, FDXR, SCD and PYCARD. The first three genes were downregulated, whereas the proapoptotic gene PYCARD showed a higher level in RPS19 silenced TF1 cells. As expected, the vast majority of known p53 targets (Riley et al., 2008) did not show an altered expression in RP depleted TF1 cells. Our data suggest that the increased expression of PYCARD may be mediated by p53 independent pathways.
3.5. Quantitative RT-PCR validation of microarray data
In order to corroborate the microarray gene expression results, we selected eight genes among the top genes of the Ranking-PCA list or among those highlighted by the PANTHER analysis. Real-time RT-PCR was performed on the same RNA samples used for microarray analysis (TF1 shRPL5, TF1 shRPL11) or on different samples with a similar level of RP downregulation (TF1 shRPS19, both DOX-inducible model and transduced cells constitutively expressing shRNAs). The expression level of FTH1 and PLIN2 (up-regulated in RP defective cells) and SLC38A1, TOM1L1, ASNS, CTH, GARS and PHGDH (down-regulated in RP defective cells) was tested. All genes were found concordantly dysregulated in RP depleted cells compared to scrambled controls (Fig. 4). These data imply that the expression patterns detected by microarray analysis are in good agreement with those detected by qRT-PCR and validate our conclusions.
Fig. 4.

Validation of microarray results by qRT-PCR.
Fold change of the expression of eight altered genes in RP depleted TF1 cells compared to scrambled controls (set equal to 1). Data were obtained by qRT-PCR measurement and normalized to GAPDH or β-actin levels. *p value < 0.05, ○p < 0.01, ‡ p < 0.001.
V体育2025版 - 4. Discussion
Many lines of evidence have underscored the pivotal role of p53 activation in the induction of cell death and proliferation block in cells and organisms subjected to ribosomal stress (Danilova et al., 2008; Dutt et al., 2011; Ellis and Gleizes, 2011; McGowan et al., 2008). The decrease in p53 activity by genetic means or using chemical inhibitors has proven useful to attenuate the proapoptotic phenotype of these models. However, p53 inhibitors cannot be used in the therapy of patients with DBA because they would drastically increase their cancer risk. The identification of p53-independent pathways that are induced by ribosomal stress may suggest new druggable steps that could be modulated to reduce the phenotypic consequences of ribosomal protein haploinsufficiency.
The aim of our work was to identify the p53-independent cellular processes that are altered during ribosomal stress due to deficiency of DBA RPs. To this aim we have used human TF1 cell lines that were silenced for the three RPs that are most commonly mutated in DBA patients, i.e. RPS19, RPL5 or RPL11. In fact, TF1 cells carry deleterious mutations on both p53 alleles, which abolish p53 function, as shown by sequencing and functional studies.
To search for impaired processes we have intercepted the transcriptomes of the three TF1 cell lines using Ranking-PCA. We identified genes involved in cell proliferation and apoptosis, in agreement with a previous study that showed abnormal levels of apoptosis related proteins in TF1 cells downregulated for RPS19 (Miyake et al., 2008). We detected the upregulation of PYCARD, a transcript encoding a proapoptotic protein that triggers the activation of caspases (Ohtsuka et al., 2004). Overexpression of Pycard in mouse inhibits the proliferation of erythroid cells, promotes their apoptosis, and interferes with their terminal differentiation (Hu et al., 2011). Abnormal expression of genes related to apoptosis was also reported in bone marrow CD34+ cells isolated from three DBA patients with mutations in RPS19 and in remission from the disease (Gazda et al., 2006), and in a previous study by our group focused on unraveling the gene expression alterations in fibroblasts isolated from DBA patients with RPS19 mutations (Avondo et al., 2009).
Moreover, a large cluster of significantly underexpressed RPs was described in these two reports (Avondo et al., 2009; Gazda et al., 2006). On the contrary, both the present study and a previous one which examined RPS19-deficient TF1 cells showed normal levels of RP mRNAs, with the exception of RPL3 (Badhai et al., 2009, Table S1). This lack of congruence might be explained by the presence or absence of wt p53 in primary cells and TF1 model, respectively. In fact, it is known that p53 can inhibit mTORC1 (Hasty et al., 2013), which mediates the transcription of RP genes (Xiao and Grove, 2009).
The expression of several genes involved in erythroid maturation is increased, in particular, erythropoietin receptor (EPOR), transferrin receptor (TFRC), CDKN2A, that encodes for p16, whose transcriptional upregulation in progenitor cells promotes differentiation (Minami et al., 2003), and HOXB2, a target of the erythroid transcription factor GATA1 (Vieille-Grosjean and Huber, 1995). However, maturation is not altered in these cells in our experimental conditions, as shown by the immunophenotypic analysis of RPS19 downregulated TF1 cells.
Interestingly, enrichment of genes involved in hematopoiesis and cell redox homeostasis was observed. Our study shows a downregulation of certain genes that participate in the protection against oxidative stress, in particular superoxide dismutase 2 (SOD2) and thioredoxin reductase 1 (TXNRD1) in cells depleted of RPs. A reduced expression of SOD2 was observed also in RPL11-deficient zebrafish (Danilova et al., 2011). These results indicate that cells depleted of RPs may have an enhanced sensitivity to oxidative stress. The same phenomenon has been suggested for two other bone marrow failure syndromes, i.e. Fanconi Anemia (FA) and Shwachman-Diamond Syndrome (SDS). This sensitivity may lead to increased apoptosis and decreased cell growth (Ambekar et al., 2010; Bogliolo et al., 2002; Mukhopadhyay et al., 2006).
Finally, we found dysregulation of clusters of genes involved in amino acid metabolism and lipid metabolism. Downregulation of genes involved in biosynthetic processes has been reported also in zebrafish with a RPL11 deficiency (Danilova et al., 2011).
All these data show that when a RP is defective there is a set of biological functions/molecular processes that are affected in different types of human cells, either primary cells from DBA patients or experimental models. The increased destruction of erythroid progenitors observed in patients with DBA may be due to the cumulative effects of p53-dependent and -independent pathways. Cells that undergo ribosomal stress alter the expression profile of a set of genes, which are consistent with the pro-apoptotic and hypo-proliferative phenotype. Further studies are needed to ascertain whether antioxidant treatment may relieve the DBA phenotype in vitro.
Conflict of interest statement
The authors declare no conflicts of interest.
VSports注册入口 - Acknowledgments
This work was funded by grants from Istituto Piemontese per la ricerca sulla Anemia di Diamond-Blackfan and PRIN (2010 4 AE23N_005) (to ID and UR), Diamond Blackfan Anemia Foundation, Telethon onlus (GGP07242 and GGP13177) and ENERCA (2008 12 10) (to ID), Cariplo 2011-0554 (to ID and AR), and Regione Piemonte Ricerca Sanitaria Finalizzata (to UR). We thank the Daniella Maria Arturi Foundation for supporting communication among DBA researchers. We also thank Dr. Stefan Karlsson for the gift of TF1 cells expressing inducible shRNAs.
V体育官网 - Appendix A. Supplementary data
Supplementary material.
"V体育安卓版" References
- Ambekar C., Das B., Yeger H., Dror Y. SBDS-deficiency results in deregulation of reactive oxygen species leading to increased cell death and decreased cell growth. Pediatric Blood & Cancer. 2010;55:1138–1144. doi: 10.1002/pbc.22700. [DOI] [PubMed] [Google Scholar]
- Andrews N.C., Faller D.V. A rapid micropreparation technique for extraction of DNA-binding proteins from limiting numbers of mammalian cells. Nucleic Acids Research. 1991;19:2499. doi: 10.1093/nar/19.9.2499. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Avondo F., Roncaglia P., Crescenzio N., Krmac H., Garelli E. Fibroblasts from patients with Diamond-Blackfan anaemia show abnormal expression of genes involved in protein synthesis, amino acid metabolism and cancer. BMC Genomics. 2009;10:442. doi: 10.1186/1471-2164-10-442. [DOI (V体育2025版)] [PMC free article] [PubMed] [Google Scholar]
- Badhai J., Fröjmark A.S., Razzaghian H.R., Davey E., Schuster J., Dahl N. Posttranscriptional down-regulation of small ribosomal subunit proteins correlates with reduction of 18S rRNA in RPS19 deficiency. FEBS Letters. 2009;583:2049–2053. doi: 10.1016/j.febslet.2009.05.023. [DOI (VSports最新版本)] [PMC free article] [PubMed] [Google Scholar]
- Bogliolo M., Cabre O., Callen E., Castillo V., Creus A. The Fanconi anaemia genome stability and tumour suppressor network. Mutagenesis. 2002;17:529–538. doi: 10.1093/mutage/17.6.529. [DOI] [PubMed] [Google Scholar]
- Boria I., Garelli E., Gazda H.T., Aspesi A., Quarello P. The ribosomal basis of Diamond-Blackfan Anemia: mutation and database update. Human Mutation. 2010;31:1269–1279. doi: 10.1002/humu.21383. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Danilova N., Sakamoto K.M., Lin S. Ribosomal protein S19 deficiency in zebrafish leads to developmental abnormalities and defective erythropoiesis through activation of p53 protein family. Blood. 2008;112:5228–5237. doi: 10.1182/blood-2008-01-132290. [DOI (V体育官网入口)] [PubMed] [Google Scholar]
- Danilova N., Sakamoto K.M., Lin S. Ribosomal protein L11 mutation in zebrafish leads to haematopoietic and metabolic defects. British Journal of Haematology. 2011;152:217–228. doi: 10.1111/j.1365-2141.2010.08396.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Draptchinskaia N., Gustavsson P., Andersson B., Pettersson M., Willig T.N. The gene encoding ribosomal protein S19 is mutated in Diamond-Blackfan anaemia. Nature Genetics. 1999;21:169–175. doi: 10.1038/5951. [DOI] [PubMed] [Google Scholar]
- Dutt S., Narla A., Lin K., Mullally A., Abayasekara N. Haploinsufficiency for ribosomal protein genes causes selective activation of p53 in human erythroid progenitor cells. Blood. 2011;117:2567–2576. doi: 10.1182/blood-2010-07-295238. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ellis S.R., Gleizes P.E. Diamond Blackfan anemia: ribosomal proteins going rogue. Seminars in Hematology. 2011;48:89–96. doi: 10.1053/j.seminhematol.2011.02.005. [DOI] [PubMed] [Google Scholar]
- Flygare J., Aspesi A., Bailey J.C., Miyake K., Caffrey J.M. Human RPS19, the gene mutated in Diamond-Blackfan anemia, encodes a ribosomal protein required for the maturation of 40S ribosomal subunits. Blood. 2007;109:980–986. doi: 10.1182/blood-2006-07-038232. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Follenzi A., Ailles L.E., Bakovic S., Geuna M., Naldini L. Gene transfer by lentiviral vectors is limited by nuclear translocation and rescued by HIV-1 pol sequences. Nature Genetics. 2000;25:217–222. doi: 10.1038/76095. [DOI] [PubMed] [Google Scholar]
- Freed E.F., Bleichert F., Dutca L.M., Baserga S.J. When ribosomes go bad: diseases of ribosome biogenesis. Molecular BioSystems. 2010;6:481–493. doi: 10.1039/b919670f. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gazda H.T., Kho A.T., Sanoudou D., Zaucha J.M., Kohane I.S. Defective ribosomal protein gene expression alters transcription, translation, apoptosis, and oncogenic pathways in Diamond-Blackfan anemia. Stem Cells. 2006;24:2034–2044. doi: 10.1634/stemcells.2005-0554. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gazda H.T., Preti M., Sheen M.R., O'Donohue M.F., Vlachos A. Frameshift mutation in p53 regulator RPL26 is associated with multiple physical abnormalities and a specific pre-ribosomal RNA processing defect in diamond-blackfan anemia. Human Mutation. 2012;33:1037–1044. doi: 10.1002/humu.22081. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hasty P., Sharp Z.D., Curiel T.J., Campisi J. mTORC1 and p53: clash of the gods? Cell Cycle. 2013;12:20–25. doi: 10.4161/cc.22912. [DOI (V体育ios版)] [PMC free article] [PubMed] [Google Scholar]
- Hu W., Yuan B., Flygare J., Lodish H.F. Long noncoding RNA-mediated anti-apoptotic activity in murine erythroid terminal differentiation. Genes & Development. 2011;25:2573–2578. doi: 10.1101/gad.178780.111. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kongsuwan K., Yu Q., Vincent A., Frisardi M.C., Rosbash M. A Drosophila Minute gene encodes a ribosomal protein. Nature. 1985;317:555–558. doi: 10.1038/317555a0. [DOI] [PubMed] [Google Scholar]
- Landowski M., O'Donohue M.F., Buros C., Ghazvinian R., Montel-Lehry N. Novel deletion of RPL15 identified by array-comparative genomic hybridization in Diamond-Blackfan anemia. Human Genetics. 2013;132:1265–1274. doi: 10.1007/s00439-013-1326-z. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Livak K.J., Schmittgen T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(− delta delta C(T)) method. Methods. 2001;25:402–408. doi: 10.1006/meth.2001.1262. [VSports手机版 - DOI] [PubMed] [Google Scholar]
- Marengo E., Robotti E., Bobba M., Milli A., Campostrini N. Application of partial least squares discriminant analysis and variable selection procedures: a 2D-PAGE proteomic study. Analytical and Bioanalytical Chemistry. 2008;390:1327–1342. doi: 10.1007/s00216-008-1837-y. [DOI] [PubMed] [Google Scholar]
- Marengo E., Robotti E., Bobba M., Gosetti F. The principle of exhaustiveness versus the principle of parsimony: a new approach for the identification of biomarkers from proteomic spot volume datasets based on Principal Component Analysis. Analytical and Bioanalytical Chemistry. 2010;397:25–41. doi: 10.1007/s00216-009-3390-8. [DOI] [PubMed] [Google Scholar]
- Massart D.L., Vanderginste B.G.M., Deming S.M., Michotte Y., Kaufman L. Elsevier; Amsterdam: 1988. Chemometrics: A Textbook. [Google Scholar]
- Massart D.L., Vanderginste B.G.M., Buydens L.M.C., De Jong S., Lewi P.J., Smeyers-Verbeke J. Elsevier; Amsterdam: 1998. Handbook of Chemometrics And Qualimetrics: Part A. [Google Scholar (V体育ios版)]
- McGowan K.A., Li J.Z., Park C.Y., Beaudry V., Tabor H.K. Ribosomal mutations cause p53-mediated dark skin and pleiotropic effects. Nature Genetics. 2008;40:963–970. doi: 10.1038/ng.188. [V体育ios版 - DOI] [PMC free article] [PubMed] [Google Scholar]
- Miller L., Gurdon J.B. Mutations affecting the size of the nucleolus in Xenopus leavis. Nature. 1970;227:1108–1110. doi: 10.1038/2271108a0. [DOI] [PubMed] [Google Scholar]
- Minami R., Muta K., Umemura T., Motomura S., Abe Y. p16INK4a induces differentiation and apoptosis in erythroid lineage cells. Experimental Hematology. 2003;31:355–362. doi: 10.1016/s0301-472x(03)00040-7. [DOI] [PubMed] [Google Scholar]
- Miyake K., Flygare J., Kiefer T., Utsugisawa T., Richter J. Development of cellular models for ribosomal protein S19 (RPS19)-deficient diamond-blackfan anemia using inducible expression of siRNA against RPS19. Molecular Therapy. 2005;11:627–637. doi: 10.1016/j.ymthe.2004.12.001. [V体育安卓版 - DOI] [PubMed] [Google Scholar]
- Miyake K., Utsugisawa T., Flygare J., Kiefer T., Hamaguchi I. Ribosomal protein S19 deficiency leads to reduced proliferation and increased apoptosis but does not affect terminal erythroid differentiation in a cell line model of Diamond-Blackfan anemia. Stem Cells. 2008;26:323–329. doi: 10.1634/stemcells.2007-0569. [DOI (VSports app下载)] [PubMed] [Google Scholar]
- Moniz H., Gastou M., Leblanc T., Hurtaud C., Crétien A. Primary hematopoietic cells from DBA patients with mutations in RPL11 and RPS19 genes exhibit distinct erythroid phenotype in vitro. Cell Death & Disease. 2012;3:e356. doi: 10.1038/cddis.2012.88. ["VSports手机版" DOI] [PMC free article] [PubMed] [Google Scholar]
- Mukhopadhyay S.S., Leung K.S., Hicks M.J., Hastings P.J., Youssoufian H., Plon S.E. Defective mitochondrial peroxiredoxin-3 results in sensitivity to oxidative stress in Fanconi anemia. Journal of Cell Biology. 2006;175:225–235. doi: 10.1083/jcb.200607061. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Narla A., Ebert B.L. Ribosomopathies: human disorders of ribosome dysfunction. Blood. 2010;115:3196–3205. doi: 10.1182/blood-2009-10-178129. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ohtsuka T., Ryu H., Minamishima Y.A., Macip S., Sagara J. ASC is a Bax adaptor and regulates the p53-Bax mitochondrial apoptosis pathway. Nature Cell Biology. 2004;6:121–128. doi: 10.1038/ncb1087. [DOI] [PubMed] [Google Scholar]
- Polati R., Menini M., Robotti E., Millioni R., Marengo E. Proteomic changes involved in tenderization of bovine Longissimus dorsi muscle during prolonged ageing. Food Chemistry. 2012;135:2052–2069. doi: 10.1016/j.foodchem.2012.06.093. [V体育平台登录 - DOI] [PubMed] [Google Scholar]
- Quarello P., Garelli E., Carando A., Brusco A., Calabrese R. Diamond-Blackfan anemia: genotype–phenotype correlation in Italian patients with RPL5 and RPL11 mutations. Haematologica. 2010;95:206–213. doi: 10.3324/haematol.2009.011783. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Riley T., Sontag E., Chen P., Levine A. Transcriptional control of human p53-regulated genes. Nature Reviews. Molecular Cell Biology. 2008;9:402–412. doi: 10.1038/nrm2395. [DOI] [PubMed] [Google Scholar]
- Robotti E., Demartini M., Gosetti F., Calabrese G., Marengo E. Development of a classification and ranking method for the identification of possible biomarkers in proteomics based on Principal Component Analysis and variable selection procedures. Molecular BioSystems. 2011;7:677–686. doi: 10.1039/c0mb00124d. [DOI] [PubMed] [Google Scholar]
- Taulli R., Accornero P., Follenzi A., Mangano T., Morotti A. RNAi technology and lentiviral delivery as a powerful tool to suppress Tpr-Met-mediated tumorigenesis. Cancer Gene Therapy. 2005;12:456–463. doi: 10.1038/sj.cgt.7700815. [VSports - DOI] [PubMed] [Google Scholar]
- Torihara H., Uechi T., Chakraborty A., Shinya M., Sakai N. Erythropoiesis failure due to RPS19 deficiency is independent of an activated Tp53 response in a zebrafish model of Diamond-Blackfan anaemia. British Journal of Haematology. 2011;152:648–654. doi: 10.1111/j.1365-2141.2010.08535.x. [DOI] [PubMed] [Google Scholar]
- Urashima M., Teoh G., Chauhan D., Ogata A., Shirahama S. MDM2 protein overexpression inhibits apoptosis of TF-1 granulocyte-macrophage colony-stimulating factor-dependent acute myeloblastic leukemia cells. Blood. 1998;92:959–967. [PubMed] [Google Scholar]
- Vieille-Grosjean I., Huber P. Transcription factor GATA-1 regulates human HOXB2 gene expression in erythroid cells. Journal of Biological Chemistry. 1995;270:4544–4550. doi: 10.1074/jbc.270.9.4544. [V体育ios版 - DOI] [PubMed] [Google Scholar]
- Vlachos A., Ball S., Dahl N., Alter B.P., Sheth S. Diagnosing and treating Diamond Blackfan anaemia: results of an international clinical consensus conference. British Journal of Haematology. 2008;142:859–876. doi: 10.1111/j.1365-2141.2008.07269.x. [VSports最新版本 - DOI] [PMC free article] [PubMed] [Google Scholar]
- Xiao L., Grove A. Coordination of ribosomal protein and ribosomal RNA gene expression in response to TOR signaling. Current Genomics. 2009;10:198–205. doi: 10.2174/138920209788185261. [DOI] [PMC free article] [PubMed] [Google Scholar]
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Supplementary material.


