Spatiotemporal Distribution of Continuous Air Pollution and Its Relationship with Socioeconomic and Natural Factors in China
The spatial distribution and correlation characteristics between the proportion of CAP days and the proportion of air pollution days in China: (a) spatial distribution of proportion of air pollution days; (b) spatial distribution of proportion of CAP days; (c) scatter figure of Globe Moran’s I value for proportion of CAP days; and (d) bivariate LISA of proportion of CAP days and proportion of air pollution days.
"> Figure 2Spatial distribution of CAP-related measurement indicators in China: (a) spatial distribution of days of CAP; (b) spatial distribution of frequencies of CAP; (c) spatial distribution of maximum amount of CAP days; (d) spatial distribution of average amount of CAP days.
"> Figure 3Temporal pattern of continuous air pollution in China.
"> Figure 4Types of regions of the major pollutants during the CAP period.
"> Figure 5Bandwidth comparison between the GWR and MGWR models.
"> Figure 6Spatial heterogeneous effects of socioeconomic factors: (a) population density, (b) per capita GDP, (c) proportion of secondary industry added value in GDP, (d) proportion of foreign direct investment in GDP, (e) NDVI, (f) road density and (g) energy consumption.
"> Figure 7Spatial heterogeneous effects of natural factors: (a) temperature, (b) precipitation, (c) wind speed, (d) relative humidity, (e) air pressure and (f) sunshine duration.
">
Abstract
: Continuous air pollution (CAP) incidents last even longer and generate greater health hazards relative to conventional air pollution episodes. However, few studies have focused on the spatiotemporal distribution characteristics and driving factors of CAP in China. Drawing on the daily reported ground monitoring data on the ambient air quality in 2019 in China, this paper identifies the spatiotemporal distribution characteristics of CAP across 337 Chinese cities above the prefecture level using descriptive statistics and spatial statistical analysis methods, and further examines the spatial heterogeneity effects of both socioeconomic factors and natural factors on CAP with a Multiscale Geographically Weighted Regression (MGWR) model. The results show that the average proportion of CAP days in 2019 reached 11. 50% of the whole year across Chinese cities, a figure equaling to about 65 days, while the average frequency, the maximum amount of days and the average amount of days of CAP were 8. 02 times, 7. 85 days and 4. 20 days, respectively. Furthermore, there was a distinct spatiotemporal distribution disparity in CAP in China. Spatially, the areas with high proportions of CAP days were concentrated in the North China Plain and the Southwestern Xinjiang Autonomous Region in terms of the spatial pattern, while the proportion of CAP days showed a monthly W-shaped change in terms of the temporal pattern. In addition, the types of regions containing major pollutants during the CAP period could be divided into four types, including “Composite pollution”, “O3 + NO2 pollution”, “PM10 + PM2. 5 pollution” and “O3 + PM2 V体育官网入口. 5 pollution”, while the region type “PM10 + PM2. 5 pollution” covered the highest number of cities. The MGWR model, characterized by multiple spatial scale impacts among the driving factors, outperformed the traditional OLS and GWR model, and both socioeconomic factors and natural factors were found to have a spatial non-stationary relationship with CAP in China. Our findings provide new policy insights for understanding the spatiotemporal distribution characteristics of CAP in urban China and can help the Chinese government make prevention and control measures of CAP incidents. Keywords: continuous air pollution; spatiotemporal distribution; driving factors; MWGR; China ."VSports" 1. Introduction
2. Materials and Methods (V体育安卓版)
2.1. Data Source
2.2. Continuous Air Pollution Measurement
2.3. Spatial Analysis Methods
2.3.1. Bivariate Spatial Autocorrelation
2.3.2. Grouping Analysis
2.3.3. Multiscale Geographically Weighted Regression (MGWR)
3. Results
3.1. Descriptive Statistical
3.2. Spatial Distribution Characteristics of CAP
3.3. Temporal Distribution Characteristics of CAP
3.4. Region Types of the Major Pollutants during the CAP Periods
3.5. Spatial Heterogeneous Effects of the Driving Forces on CAP
3.5.1. Goodness of Fit and Bandwidth
3.5.2. Estimated Parameter Results
4. Discussion
5. Conclusions
Author Contributions (V体育平台登录)
VSports app下载 - Funding
"V体育官网入口" Institutional Review Board Statement
V体育ios版 - Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- China Statistical Yearbook 2020; China Statistics Press: Beijing, China, 2020.
- Zhan, D.S.; Kwan, M.P.; Zhang, W.Z.; Yu, X.F.; Meng, B.; Liu, Q.Q. The driving factors of air quality index in China. J. Clean. Prod. 2018, 197, 1342–1351. ["V体育ios版" Google Scholar] [CrossRef]
- Wang, S.J.; Zhou, C.S.; Wang, Z.B.; Feng, K.S.; Hubacek, K. The characteristics and drivers of fine particulate matter (PM2.5) distribution in China. J. Clean. Prod. 2017, 142, 1800–1809. ["VSports在线直播" Google Scholar] [CrossRef]
- World Bank. Pollution. Available online: https://www.worldbank.org/en/topic/pollution#1 (accessed on 20 January 2022).
- Liu, B.M.; Ma, Y.Y.; Gong, W.; Zhang, M.; Yang, J. Study of continuous air pollution in winter over Wuhan based on ground-based and satellite observations. Atmos. Pollut. Res. 2018, 9, 156–165. ["VSports" Google Scholar] [CrossRef]
- Wang, Y.S.; Yao, L.; Wang, L.L.; Liu, Z.R.; Ji, D.S.; Tang, G.Q.; Zhang, J.K.; Sun, Y.; Hu, B.; Xin, J.Y. Mechanism for the formation of the January 2013 heavy haze pollution episode over central and eastern China. Sci. China Earth Sci. 2014, 57, 14–25. [Google Scholar (V体育官网)] [CrossRef]
- Cai, W.Y.; Xu, X.D.; Cheng, X.H.; Wei, F.Y.; Qiu, X.F.; Zhu, W.H. Impact of “blocking” structure in the troposphere on the wintertime persistent heavy air pollution in northern China. Sci. Total Environ. 2020, 741, 140325. [Google Scholar] [CrossRef]
- Hu, C.-Y.; Gao, X.; Fang, Y.; Jiang, W.; Huang, K.; Hua, X.-G.; Yang, X.-J.; Chen, H.-B.; Jiang, Z.-X.; Zhang, X.-J. Human epidemiological evidence about the association between air pollution exposure and gestational diabetes mellitus: Systematic review and meta-analysis. Environ. Res. 2020, 180, 108843. [Google Scholar] [CrossRef]
- Chen, Y.; Ebenstein, A.; Greenstone, M.; Li, H. Evidence on the impact of sustained exposure to air pollution on life expectancy from China’s Huai River policy. Proc. Natl. Acad. Sci. USA 2013, 110, 12936–12941. [Google Scholar] [CrossRef]
- Shen, Y.; Wu, Y.Y.; Chen, G.D.; Van Grinsven, H.J.M.; Wang, X.F.; Gu, B.J.; Lou, X.M. Non-linear increase of respiratory diseases and their costs under severe air pollution. Environ. Pollut. 2017, 224, 631–637. [VSports手机版 - Google Scholar] [CrossRef]
- Chen, R.; Zhao, Z.; Kan, H. Heavy smog and hospital visits in Beijing, China. Am. J. Respir. Crit. Care Med. 2013, 188, 1170–1171. [Google Scholar (VSports最新版本)] [CrossRef]
- Bai, L.; Yang, J.; Zhang, Y.; Zhao, D.; Su, H. Durational effect of particulate matter air pollution wave on hospital admissions for schizophrenia. Environ. Res. 2020, 187, 109571. [Google Scholar] [CrossRef]
- Xiao, Q.Y.; Geng, G.N.; Liang, F.C.; Wang, X.; Lv, Z.; Lei, Y.; Huang, X.M.; Zhang, Q.; Liu, Y.; He, K.B. Changes in spatial patterns of PM2.5 pollution in China 2000-2018: Impact of clean air policies. Environ. Int. 2020, 141, 105776. [Google Scholar] [CrossRef] [PubMed]
- Wei, G.E.; Zhang, Z.K.; Ouyang, X.; Shen, Y.; Jiang, S.N.; Liu, B.L.; He, B.J. Delineating the spatial-temporal variation of air pollution with urbanization in the Belt and Road Initiative area. Environ. Impact Assess. Rev. 2021, 91, 106646. [Google Scholar] [CrossRef]
- Ye, W.F.; Ma, Z.Y.; Ha, X.Z.; Yang, H.C.; Weng, Z.X. Spatiotemporal patterns and spatial clustering characteristics of air quality in China: A city level analysis. Ecol. Indic. 2018, 91, 523–530. [Google Scholar] [CrossRef]
- Ma, G.Z.; Hofmann, E.T. Immigration and environment in the U.S.: A spatial study of air quality. Soc. Sci. J. 2019, 56, 94–106. [VSports最新版本 - Google Scholar] [CrossRef]
- Li, J.; Garshick, E.; Hart, J.E.; Li, L.X.; Shi, L.H.; Al-Hemoud, A.; Huang, S.D.; Koutrakis, P. Estimation of ambient PM2.5 in Iraq and Kuwait from 2001 to 2018 using machine learning and remote sensing. Environ. Int. 2021, 151, 106445. [Google Scholar] [CrossRef] [PubMed]
- Jiang, W.; Gao, W.D.; Gao, X.M.; Ma, M.C.; Zhou, M.M.; Du, K.; Ma, X. Spatio-temporal heterogeneity of air pollution and its key influencing factors in the Yellow River Economic Belt of China from 2014 to 2019. J. Environ. Manag. 2021, 296, 113172. [Google Scholar (VSports)] [CrossRef]
- Xu, L.J.; Zhou, J.X.; Guo, Y.; Wu, T.M.; Chen, T.T.; Zhong, Q.J.; Yuan, D.; Chen, P.Y.; Ou, C.Q. Spatiotemporal pattern of air quality index and its associated factors in 31 Chinese provincial capital cities. Air Qual. Atmos. Health 2017, 10, 601–609. [Google Scholar] [CrossRef]
- Shen, Y.; Zhang, L.P.; Fang, X.; Ji, H.Y.; Li, X.; Zhao, Z.W. Spatiotemporal patterns of recent PM2.5 concentrations over typical urban agglomerations in China. Sci. Total Environ. 2019, 655, 13–26. [Google Scholar] [CrossRef]
- Shen, F.Z.; Zhang, L.; Jiang, L.; Tang, M.Q.; Gai, X.Y.; Chen, M.D.; Ge, X.L. Temporal variations of six ambient criteria air pollutants from 2015 to 2018, their spatial distributions, health risks and relationships with socioeconomic factors during 2018 in China. Environ. Int. 2020, 137, 105556. [Google Scholar] [CrossRef]
- Lin, X.Q.; Wang, D. Spatiotemporal evolution of urban air quality and socioeconomic driving forces in China. J. Geogr. Sci. 2016, 26, 1533–1549. [Google Scholar] [CrossRef]
- Yuan, M.; Huang, Y.P.; Shen, H.F.; Li, T.W. Effects of urban form on haze pollution in China: Spatial regression analysis based on PM2.5 remote sensing data. Appl. Geogr. 2018, 98, 215–223. [V体育官网 - Google Scholar] [CrossRef]
- Luo, J.Q.; Du, P.J.; Samat, A.; Xia, J.S.; Che, M.Q.; Xue, Z.H. Spatiotemporal Pattern of PM2.5 Concentrations in Mainland China and Analysis of Its Influencing Factors using Geographically Weighted Regression. Sci. Rep. 2017, 7, 40607. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.H.; Ji, Z.M.; Kang, S.C.; Zhang, Q.G.; Chen, X.T.; Lee, S.Y. Spatiotemporal variations of air pollutants in western China and their relationship to meteorological factors and emission sources. Environ. Pollut. 2019, 254, 112952. [VSports手机版 - Google Scholar] [CrossRef] [PubMed]
- Wang, S.J.; Liu, X.P.; Yang, X.; Zou, B.; Wang, J.Y. Spatial variations of PM2.5 in Chinese cities for the joint impacts of human activities and natural conditions: A global and local regression perspective. J. Clean. Prod. 2018, 203, 143–152. [Google Scholar] [CrossRef]
- Hao, Y.; Liu, Y.M. The influential factors of urban PM2.5 concentrations in China: A spatial econometric analysis. J. Clean. Prod. 2016, 112, 1443–1453. [Google Scholar] [CrossRef]
- Abdo, A.-B.; Li, B.; Zhang, X.; Lu, J.; Rasheed, A. Influence of FDI on environmental pollution in selected Arab countries: A spatial econometric analysis perspective. Environ. Sci. Pollut. Res. 2020, 27, 28222–28246. [Google Scholar] [CrossRef]
- Yu, M.Y.; Xu, Y.; Li, J.Q.; Lu, X.C.; Xing, H.Q.; Ma, M.L. Geographic Detector-Based Spatiotemporal Variation and Influence Factors Analysis of PM2.5 in Shandong, China. Pol. J. Environ. Stud. 2021, 30, 463–475. ["V体育ios版" Google Scholar] [CrossRef]
- Xu, G.Y.; Ren, X.D.; Xiong, K.N.; Li, L.Q.; Bi, X.C.; Wu, Q.L. Analysis of the driving factors of PM2.5 concentration in the air: A case study of the Yangtze River Delta, China. Ecol. Indic. 2020, 110, 105889. [Google Scholar] [CrossRef]
- Liu, H.M.; Fang, C.L.; Zhang, X.L.; Wang, Z.Y.; Bao, C.; Li, F.Z. The effect of natural and anthropogenic factors on haze pollution in Chinese cities: A spatial econometrics approach. J. Clean. Prod. 2017, 165, 323–333. [Google Scholar] [CrossRef]
- Liu, Q.Q.; Wu, R.; Zhang, W.Z.; Li, W.; Wang, S.J. The varying driving forces of PM2.5 concentrations in Chinese cities: Insights from a geographically and temporally weighted regression model. Environ. Int. 2020, 145, 106168. [Google Scholar (V体育官网入口)] [CrossRef]
- Guo, B.; Wang, X.X.; Pei, L.; Su, Y.; Zhang, D.M.; Wang, Y. Identifying the spatiotemporal dynamic of PM2.5 concentrations at multiple scales using geographically and temporally weighted regression model across China during 2015–2018. Sci. Total Environ. 2021, 751, 141765. [Google Scholar] [CrossRef] [PubMed]
- Zhan, D.; Kwan, M.-P.; Zhang, W.; Wang, S.; Yu, J. Spatiotemporal Variations and Driving Factors of Air Pollution in China. Int. J. Environ. Res. Public Health 2017, 14, 1538. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, C.S.; Li, S.J.; Wang, S.J. Examining the Impacts of Urban Form on Air Pollution in Developing Countries: A Case Study of China’s Megacities. Int. J. Env. Res. Pubulic Health 2018, 15, 1565. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anselin, L. Under the hood issues in the specification and interpretation of spatial regression models. Agric. Econ. 2002, 27, 247–267. [Google Scholar] [CrossRef]
- Moore, T.W.; Dixon, R.W. A Spatiotemporal Analysis and Description of Hurricane Ivan’s (2004) Tornado Clusters. Pap. Appl. Geogr. 2015, 1, 192–196. [Google Scholar] [CrossRef]
- Brunsdon, C.; Fotheringham, S.; Charlton, M. Geographically weighted regression. J. R. Stat. Soc. Ser. D 1998, 47, 431–443. [Google Scholar] [CrossRef]
- Fotheringham, A.S.; Yang, W.; Kang, W. Multiscale geographically weighted regression (MGWR). Ann. Am. Assoc. Geogr. 2017, 107, 1247–1265. [Google Scholar] [CrossRef]
- Wang, X.; Zhou, D.Q. Spatial agglomeration and driving factors of environmental pollution: A spatial analysis. J. Clean. Prod. 2021, 279, 123839. [Google Scholar] [CrossRef]
- Jiang, H.Y.; Li, H.R.; Yang, L.S.; Li, Y.H.; Wang, W.Y.; Yan, Y.C. Spatial and Seasonal Variations of the Air Pollution Index and a Driving Factors Analysis in China. J. Environ. Qual. 2014, 43, 1853–1863. [Google Scholar (VSports最新版本)] [CrossRef]







| Air Quality Index (AQI) | Air Quality Index Level | Air Quality Index Category | Major Pollutants |
|---|---|---|---|
| 0–50 | Level 1 | Excellent | SO2, NO2, CO, O3, PM10, PM2.5 |
| 51–100 | Level 2 | Good | |
| 101–150 | Level 3 | Light pollution | |
| 151–200 | Level 4 | Moderate pollution | |
| 201–300 | Level 5 | Heavy pollution | |
| >300 | Level 6 | Serious pollution |
| Measurement Indicators | Mean | Std. Dev. | Min | Max |
|---|---|---|---|---|
| Proportion of air pollution days (%) | 17.80 | 16 | 0.00 | 78.36 |
| Proportion of CAP days (%) | 11.50 | 13 | 0.00 | 73.15 |
| Frequency of CAP (times) | 8.02 | 8.06 | 0.00 | 29.00 |
| Maximum of CAP days (days) | 7.85 | 6.96 | 0.00 | 64.00 |
| Average of CAP days (days) | 4.20 | 2.41 | 0.00 | 16.69 |
| Types of Regions | PM10 | O3 | PM2.5 | NO2 | Count | Types |
|---|---|---|---|---|---|---|
| Group 1 | 7.28 | 58.17 | 56.58 | 0.06 | 53 | Composite pollution |
| Group 2 | 0.00 | 32.11 | 0.22 | 3.11 | 9 | O3 + NO2 pollution |
| Group 3 | 130.33 | 0.67 | 28.83 | 0.00 | 6 | PM10 + PM2.5 pollution |
| Group 4 | 1.20 | 8.46 | 13.87 | 0.14 | 269 | O3 + PM2.5 pollution |
| Mean | 4.43 | 16.77 | 20.49 | 0.20 | 337 |
| Goodness of Fit Statistic | OLS | GWR | MGWR |
|---|---|---|---|
| Residual sum of squares | 168.862 | 34.963 | 35.712 |
| Log likelihood | −362.321 | −96.184 | −99.764 |
| AIC | 752.642 | 388.233 | 358.079 |
| AICc | 756.133 | 469.288 | 407.464 |
| R2 | 0.5 | 0.897 | 0.894 |
| Adj. R2 | 0.48 | 0.855 | 0.862 |
| BIC | 762.635 | 661.153 | |
| Degree of Dependency (DoD) | 0.668 | 0.704 |
| Variable | OLS Model | MGWR Model | ||||
|---|---|---|---|---|---|---|
| Est. | Mean | STD | Min | Median | Max | |
| Intercept | 0.000 | 0.885 | 0.356 | 0.396 | 0.772 | 1.779 |
| popden | −0.006 | 0.173 | 0.213 | −0.055 | 0.068 | 0.596 |
| pgdp | −0.173 *** | 0.008 | 0.095 | −0.320 | 0.019 | 0.166 |
| prosec | −0.015 | −0.030 | 0.023 | −0.104 | −0.021 | −0.011 |
| FDI | 0.115 ** | −0.040 | 0.004 | −0.054 | −0.039 | −0.035 |
| NDVI | −0.141 ** | −0.204 | 0.011 | −0.247 | −0.203 | −0.186 |
| roadden | 0.208 *** | −0.014 | 0.001 | −0.022 | −0.014 | −0.011 |
| energy | 0.069 | 0.022 | 0.154 | −0.392 | 0.013 | 0.417 |
| tem | 0.230 *** | −0.437 | 0.324 | −0.833 | −0.466 | 0.079 |
| pre | −0.541 *** | 0.015 | 0.183 | −0.236 | −0.036 | 0.361 |
| ws | −0.149 ** | 0.056 | 0.223 | −0.571 | 0.085 | 0.443 |
| rh | −0.461 *** | −0.080 | 0.287 | −0.810 | −0.088 | 0.490 |
| ap | 0.435 *** | 0.535 | 0.089 | 0.403 | 0.518 | 0.658 |
| sd | −0.315 *** | −0.019 | 0.127 | −0.271 | 0.050 | 0.103 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhan, D.; Zhang, Q.; Xu, X.; Zeng, C. Spatiotemporal Distribution of Continuous Air Pollution and Its Relationship with Socioeconomic and Natural Factors in China. Int. J. Environ. Res. Public Health 2022, 19, 6635. https://doi.org/10.3390/ijerph19116635
Zhan D, Zhang Q, Xu X, Zeng C. Spatiotemporal Distribution of Continuous Air Pollution and Its Relationship with Socioeconomic and Natural Factors in China. International Journal of Environmental Research and Public Health. 2022; 19(11):6635. https://doi.org/10.3390/ijerph19116635
Chicago/Turabian StyleZhan, Dongsheng, Qianyun Zhang, Xiaoren Xu, and Chunshui Zeng. 2022. "Spatiotemporal Distribution of Continuous Air Pollution and Its Relationship with Socioeconomic and Natural Factors in China" International Journal of Environmental Research and Public Health 19, no. 11: 6635. https://doi.org/10.3390/ijerph19116635
APA StyleZhan, D., Zhang, Q., Xu, X., & Zeng, C. (2022). Spatiotemporal Distribution of Continuous Air Pollution and Its Relationship with Socioeconomic and Natural Factors in China. International Journal of Environmental Research and Public Health, 19(11), 6635. https://doi.org/10.3390/ijerph19116635

